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All the nonvanishing matrix elements of all the components of the tensor operator which belongs
to the regular representation (the octet) of SUs have been evaluated. Of special interest is the com-
ponent %, for it is usual in the broken unitary symmetry theory of strong interactions to assume
that the interactions which break exact SU; invariance have the same transformation properties as
Y. Previously, matrix elements of Y connecting states of the same irreducible representation of SU;
have been given by Okubo in the form of the mass formula. Knowledge of all the matrix elements
of Y is essential however if one is to do more than evaluate one-particle matrix elements in the broken
unitary symmetry theory. Our method provides such knowledge for all components of the octet
tensor operator with little more effort than is needed to treat Y alone.

1. INTRODUCTION

MOTIVATION for the present work is to be
found in the theory of the strong interactions
which uses SU; not as an exact but as an approximate
symmetry group.’ In such a theory the interactions
which perturb exact invariance are supposed to have
invariance only under the isospin and hypercharge
subgroups of SU;. The simplest possible assumption
that can be made to describe the situation is that
the perturbative interactions have the same trans-
formation properties under SU, as the generator
Y (hypercharge) of SUs. An equivalent statement
is that they have the tensorial character with respect
to SU; of the I = Y = 0 component Y of the
octet or regular tensor operator’ of SU,; So far
there have been very few® attempts to do any more
than evaluate single-particle matrix elements in the

* Research supported in part by the U. S. Atomic Energy
Commission.

t M. Gell-Mann, Cal. Tech. Rept. CTSI~20, 1061 (un-
published), and Phys. Rev. 125, 1067 (1962). 8. Okubo,
Progr. Theoret. Phys. (Kyoto) 27, 949; 28, 24 (1962).

? By regular tensor operator, we mean the tensor operator
which transforms under the group according to the regular
representation of the group. For SU;, this representation is
the octet or the IR (1, 1).

¢ See, for example, C. Dullemond, A. J. Macfarlane, and
E. C. G. SBudarshan, Phys. Rev. Letters 10, 423 (1961); and
E. C. G. Sudarshan, Proc. Athens Conference on Recently

Discovered Resonant Particles, Ohio University, Athens,
Ohio, 1963.

broken SU, theory. The most notable achievement
of the theory—the now well-known mass formula
of Okubo'—is of the latter type. Essentially the
formuls gives the matrix elements of Y within a
given irreducible representation (IR) of SU,. How-
ever, it has become apparent that a systematic
development of the broken SU; theory is necessary
rather than further investigation of the exact theory.
Part of the basic machinery of this development
is the computation of all matrix elements of %,
including those which conneet different IR’s of
SUs. Such formulas are needed as soon as one tries
to evaluate matrix elements in the broken theory
which involve states of more than one particle.
These remarks of course refer to the desecription
of the broken theory in which we consider matrix
elements of a strong-interaction Hamiltonian of the
form a + BY where a and f are scalar under SU,,
between states of particles assigned to specific IR’s
of 8U, But they are equally valid in the variant
of the theory wherein the strong-interaction Hamil-
tonian is taken (at least, in a first approach) to be
SUginvariant and the observed deviations from
consequences of exact invariance are produced by
modifications of the description of particles appro-
priate to the exact theory. Modification of the
desired type can be achieved, for example, by mixing
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a small amount of an I = Y = 0 spurion into the
bare-particle states, or more generally by associating
particles with states produced by suitable mixing
of IR’s of SU,.*

Originally, then, the present work was undertaken
to derive explicit formulas for all matrix elements
of the component Y of the octet operator of SU,.
In fact, with very little extra effort, we were able
to obtain such results for all components of the
octet operator of SU,. In the ensuing sections we
describe how we implemented this extended program.
In Sec. 2, we review those facts regarding the IR’s
of SU; on which our later developments depend,
in a manner which ought to prepare a natural
approach to them. Then in Sec. 3, we define the
octet operator of SU; and determine which of the
matrix elements of its components do not vanish.
Secs. 4 and 5 are concerned with the technical
details of evaluating the allowed matrix elements.
For ease of reference, all results are presented in
tables.

It will be readily observed that the present
approach to the regular tensor operator of SU; was
suggested by the treatment of the corresponding
problem for R; (which has the vector operator as
regular tensor operator) described, e.g., by Condon
and Shortley.®

Finally, we point out that the results obtained
here will also be useful in discussing electromagnetic
effects in the unitary symmetry theory. They will
allow an extension of the method previously applied®
to one-particle matrix elements to more general
physical situations, e.g., photoproduction.

2. PROPERTIES OF THE IR’s OF SU;

We begin with a discussion of those properties
of the IR’s of SU; that we shall require later.

¢+ Particle mixtures in a theory with charge-independent,
strong interactions and electromagnetic interaction have been
considered by various authors, e. g., 8. Okubo, Nuovo Cimento
16, 963 (1960); S. L. Glashow, Phys. Rev. Letters 7, 469
(1961). Use of the ¢—w mixing to break exact SU; invariance
has been studied by J. J. Sakurai, Phys. Rev. Letters 9, 472
(1962); 8. Okubo, Phys. Letters 5, 165 (1962); S, L. Glashow,
Phys. Rev. Letters 11, 48 (1963).

$E. U. Condon and G. H. Shortley, Theory of Atomic
Spectra (Cambridge University Press, Cambridge, England,
1955), p. 61. See also E. Feenberg and G. E. Pake, Notes on
the Quantum Theory of Angular Momentum (Addison-Wesley
Publishing Company, Inc., Cambridge, Massachusetts,
1953), p. 29. The original treatment appears in M. Born and
P. Jordan, Elementare Quantenmechanik (Springer-Verlag,
Leipzig, 1930).

¢ A. J. Macfarlane and E. C, G. Sudarshan, Proc. Stanford
Conference on Nucleon Structure, Stanford, California, 1963
(to be published), and Electromagnetic Properties of Stable
Particles and Resonances in the Unitary Symmetry Theory (to
be published). See also 8. P. Rosen, Phys. Rev. Letters 11, 100
(1963) and C. A. Levinson, H. J. Lipkin and S. Meshkow,
Phys. Letters (to be published).
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In the most usual notation, the eight generators
of SU; are denoted by

H,H,E,,,E.;, E.,. 2.1)

They have CR’s” given in the Weyl® canonical form
as Eqgs. (I1.12), (I1.17), and (I1.18) of the paper
by Behrends et al.’ We also note that the Hermiticity
properties

H'=H, i=

El =E., a=

1,2,
1,2,3

2.2)

can be imposed on the irreducible matrix representa-
tions of the generators (2.1). Contact with strong-
interaction physics follows from the identifications

I,=V3H, Y =2H, (2.3)
I. =1, +1il, = 6'E,,, (2.4)

where I and Y are, respectively, the generators
of isospin rotations and hypercharge gauge trans-
formations. We shall also introduce quantities F,
and G, by

F., = 6E,, F_ = 6'E,,
G+ = _G*E_g, G_ = G*E_z.

The motivation for this becomes clear later on in
this section. In terms of the set

In Y; I&, Fty G*; (26)

of eight elements, the Weyl CR’s of SU, are as
follows:

(2.5)

[Z., Y] =0, (A1)
(L., I.] = £1., (A2)
., F.] = £3F., (A3)
., G.] = £3G., (A9)
[Y,1.] =0, (A5)
Y,F.] =F., (A6)
Y, G.] = -G, (A7)
(L., I-] = 2L, (A8)
[F.,G:] =1I, £ 3V, (A9)
., F.}1 =0, (A10)
[I.,G.] =0, (Al1)

7It will be convenient to abbreviate commutation rule
and irreducible representation to CR and IR.

8 See G. Racah, Princeton lectures, 1951 (unpublished).

% R. E. Behrends, J. Dreitlein, C. Fronsdal, and B. W. Lee,
Rev. Mod. Phys. 34, 1 (1962).
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[F.,,F.]=0, (A12)
[G.,G] =0, (A13)
., Fs] =F., (Al4)
1., G+] = G, (A15)
[F., Q] = FI.. (A16)

Also, the Hermiticity conditions (2.2) become
=1, VY =y,

T ) * 2.7)
Il=I, F. =@, F' =-@..

For the IR’s of SU; we shall use the highest weight
notation (A, u), whose significance was explained in
a previous paper.'’ In the representation space of
the IR (A, u), we can introduce a system A p I » Y)
of basic vectors, where I(I + 1), », and Y are,
respectively, the eigenvalues of the commutative
operators I (total isospin), I, (its z component)
and Y (hypercharge). In what follows, we shall
frequently need explicit formulas for the non-
vanishing matrix elements of the nondiagonal
elements of the set (2.6) of generators. For I,
the relevant results are

AplvElY|I.ApIvY)
=[dF»I v+ 1D} @BIL

The nonvanishing matrix elements of F. and G.
have been computed by Biedenharn' and others.'
Here we use Biedenharn’s results, mentioning also
the fact that the other cited authors have disposed
of the existing arbitrariness of phases in a different
fashion. We wish to present the results in a very
specific manner, which exhibits clearly the relation-
ship of F. and G. to the isospin subgroup R;(I)
of S Ua.

From Eqs. (A3), (A10), and (Al4), we note that
F. have exactly'® the CR’s with I necessary for us
to regard them as, respectively, the » = +31 compon-
ents of a spherical tensor operator of rank 1 with
respect to Rs(I). Accordingly, we expect to find
that F, obeys the selection rules 7 — I + % and
v = v + 3, and that F_ obeys I —» I + % and
v —» — 4. Also the dependence of the corresponding
nonvanishing matrix elements of F. can be written

10 A, J. Macfarlane, E. C. G. Sudarshan, and C. Dulle-
mond, Nuovo Cimento 30, 845 (1963).

1 I, C. Biedenharn, Phys. Letters 3, 69 (1962).

12 M. Harvey and J. P, Elliott, Proc. Roy. Soc. London A
272, 557 (1963). K. T. Hecht, SU; “‘Reduction Coefficients and
Fractional Parentage Coefficients,” (University of Michigan
preprint, 1963).

13 See, e. g., M. E. Rose, Elementary Theory of Angular
Momentum (John Wiley & Sons, Inc.,, New York, 1957),
Eqgs. (3.16a) and (3.172).
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down directly from the Wigner—Eckart theorem
for Rs(I). Further, from Eq. (A6), it follows that
both F, obey the selection rule ¥ — Y -+ 1. All
this information can be seen to be present in the
following transcription of Biedenharn’s formulas:

Apl+iv+3 Y+ F, NpIvY)

= CI 3 I+3v3vHDANp IHIY)EI + 27,
(B.2)

ApI=3v+3 Y+1|F, pplIvY)

=CI3I-3»3»+HBOrI-3V)2D7,

Apl+iv—32Y+1|F_- AplIrvY)

= CU 3 I+3v —3r=—PAN IHNEI + 27,
B.4)

(B.3)

Aul—3v—3Y+1|F_PpIrvY)
=0l iI-%y —1y—0BMAuI-iV)2D)} (B.5)

Herein, we have used the notation of Rose'® for
the CG coefficients of R,(I). The explicit formulas
for them are too well known to need repetition here.
The functions 4 and B are given by

Awz) = [[30N — ) + 2 + 1]

X 3O+ 20) + = + 2]3EN + ) — AP,
B(wz) = [[3® — N + 2]

X GO+ 20) — 2 + 1B+ w) + 2 + TP BT
We note that the same sets of factors multiply the
C@ coefficients of R;(I) in each of the pairs (B2)
and (B4), (B3) and (B5). This is a consequence
of the Wigner-Eckart theorem for R,(I), the sets
of factors in question being the reduced with respect

to R3(I) matrix elements of F and for the I — I + 3
cases.

Likewise, Eqs. (A4), (A11), and (A15) show that
G. also are the » = 3 components of a spherical
tensor of rank % with respect to R3;(I). In faet,
this rank-} spherical tensor is exactly the Hermitian
adjoint in the sense of Edmonds' of that which
has F, as its v = ==} components. This can be seen
directly by ecomparing

G. = FF, (2.8)
with the cited equation. From (B2)-(B5) and Eq.
(2.8), we obtain the results:

ANp I+ v+3Y—1|G N plIvY)
= CU 3 I+35 3ot B)(-)
X B p I-3Y4+1D@I + 2%,  (B.8)
14 A. R. Edmonds, Angular Momentum in Quantum Me-

chanics (Princeton University Press, Princeton, New Jersey,
1957), Eq. (5.5.3).

(B.6)
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Aul-3v+3Y-1{G NplrY)
= CUI3I-3v3r+PANu I+3Y-12D™,

(B.9)
ApI+iv—32Y—-1G_ApI»Y)
=CI 3 I+3» —3v—3(-)

X B\ p I-3Y+1D@I + 27, (B.10)

Apl—-3v—2Y—-1|G_-AulrY)

=CI3I-%v —3»—DAQpI+3Y-1@D,
(B.11)

which completes the catalog, Eq. (B), of the non-
vanishing matrix elements of the nondiagonal
members of the set (2.6) of generators of SUs.

It should now be clear that the quantities F.
and G. were introduced in Eq. (2.5) so that the
crucial importance of the role of the subgroup Ri(I)
of SU; in the theory of SU,; could be brought
clearly into focus. Of course, the separation of the
set (2.6) into a triplet, a singlet and two doublets
reflects the by-now-well-known structure of octets
in the Ne’eman—Gell-Mann theory.*®

3. THE OCTET OPERATORS OF SU;

In this section we define the octet operator of
SU; and derive the selection rules which determine
which of its matrix elements do not vanish identically.

We begin with a general definition of regular tensor
operator. Let X, (1 < p < r) be the (Hermitian)
generators of a compact Lie group L of order r.
It is well known® that L is defined uniquely up
to local isomorphism by their CR’s:

X,, X,] =c,.X,. (3.1)

Herein the ¢,,” are the structure constants of L
which satisfy the antisymmetry property

Coo + 7 =0, (3.2)

and the Jacobi identity. The components T,(1 <p<r)
of the regular tensor operator of L are now defined
according to'®

T

[X,, T.] = ¢,,'T.. (3.3)

We observe that Egs. (3.2) and (3.3) imply the
equations

[T,, X,] = cpﬂTTr- (3.9

From the fact that T, = X, satisfies the definition

(3.3), we conclude that the set of generators of L

15 Y, Ne’eman, Nucl. Phys. 26, 222 (1961); M. Gell-Mann,

footnote 1.
16 J, Ginibre, J. Math. Phys. 4, 720 (1963).

is a speeial case of the regular tensor operator.
Also, by comparison of Eq. (3.3) with (3.1), we may
say the set T, transform under L exactly as do
the set X, of generators. In the familiar context
of the rotation group in three dimensions, the
regular tensor operator is just the vector operator.
It is readily verified that the CR’s of its components
with the rotation generators agrees with Eqgs. (3.3)
and (3.4).

We now introduce the regular tensor operator
of SU,. Since the regular representation of SU, is
the IR (1, 1) or octet, we normally speak of the
octet operator of SU;. The octet operator of SU; is
the set of eight quantities

9:1Y; 94y Fsy Gs,y (3.5)

which transform under SU; exactly as do the set
(2.6) of generators. The CR’s of the components
(3.5) of the octet operator with the generators (2.6)
bear the same relation to Eq. (A) as does the general
definition (3.3) of regular tensor operator to Eq.
(3.1). Hence we have

I, Y] = [4., Y] =0, (Cn), (DY)
L., 9.] = [9., [.] = 4., (C2), (D2)
[L.,5.] = [4., F.] = £37,, (C3), (D3)
(1., G:] = [9., G.] = *iG., (C4), (DY
[Y,9.] = [y, I.] =0, (C5), (D5)
lY,5.] = [y, F.] =9, (C6), (D6)
¥,6.] =1y, G.] = -6, (C7), (D7)
(I_,9.]1=1[9-,1.] = 29, (C8), (D8)
[F., 6] = [F., G=] = 9. £ 3, (C9), (DY)

1., 5.] = [9., F.] =0,
[l.)G.] = [4.,G.] = 0,
[F., 5] =[5, F] =0,
[G.,8-]1 =[G+, G-]1 =0,
., F=] = [94, F3] = 7,
(L., Ge] = [9s, G=] = G,
[F.,G.] = [., G.] = F4,,

., 9.] =0,
Y, 4] =0,
lI.,9.] =0,
[F., %] = 0,

[Gt: g*] = 0.

(C10), (D10)
(C11), (D11)
(C12), (D12)
(C13), (D13)
(C14), (D14)
(C15), (D15)
(C16), (D16)

(E1)

(B2)

(E3)

(E4)
(E5)
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It is our intention to use Egs. (C), (D), and (E),
along with the known formulas (B) for the non-
vanishing matrix elements of the generators (2.6),
to evaluate all the nonvanishing matrix elements
of the components (3.5) of the octet operator. We
first must determine what are the nonvanishing
matrix elements of the type

NIV Y| 9 DY)

where 91 belongs to the set (3.5).

We consider first the selection rules (A, ) — (\/, »).
Since 91 is a component of the octet tensor operator,
it is evident that the allowed (\/, u') are those that
are contained as irreducible constituents of the
Kronecker product

M @a, . 3.7

This is the analog of the statement for the three-
dimensional rotation group that the vector operator
connects j to j 4+ 1, j and j — 1. In the present
case, the reduction of (2.16) can be effected by
exploiting the correspondence of IR’s of SU, to
Young tableaux in the manner of Edmonds"” or
else by the method of Speiser.’® The result we find
is that the product (3.7) contains'

(3.6)

M A+2,p—1) onceunless u=0;

Iy A—1,u—1) onceunless u =0 or
A=0;

(III) W ~2,u+ 1) onceunless A =0 or 1;

IV) (A\+1,p+4 1) once;

(V) (A\—1,z+2) onceunless A = 0;

(VI) 3+ 1,5 —2) onceunless p =0 or 1;

(VII) M\ m) twice if N, u # 0,

onceif A =0,u 0 or
w=0,N#0,
notatallif A =pu=0.

We shall have to treat all seven cases separately.
Case (VII) is surely the most complicated since the
possible double appearance of (A, u) itself means
that there are two independent (SU,;) reduced
matrix elements involved. Fortunately, Okubo' has
already treated this case. Okubo derived a formula®
which shows that the components of the octet
operator can be regarded as certain functions of the
generators of SU; as far as their matrix elements
within a given IR of SU; are concerned. Hence
Eq. (B) allows the nonvanishing matrix elements

(19:5721)&. R. Edmonds, Proc. Roy. Soc. London A 268, 567
8 D). R. Speiser, Proc. Istanbul Summer School, Istanbul,
1962 (to be published).
1 Familiar results can be verified to follow from this.
. 1 8ee Eq. (A.8) of the first of the papers by Okubo cited
in footnote 1.
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of the octet operator under Case (VII) to be directly
computed. The fact that Okubo’s method does not
appear to be applicable to Cases (I)-(VI) may be
contrasted with the fact that our approach to these
cases may also be applied to Case (VII). Our
method consists in manipulation of CR’s. It will
turn out however that we really need apply it only
to two suitably chosen cases, e.g., Cases (I) and (II).
Then Cases (III) and (IV) can be obtained from
these respective cases by a process involving
Hermitian conjugation. Finally, Cases (V) and (VI)
can be obtained from Cases (III) and (I), respec-
tively, by R conjugation,” which effects the trans-
formation (A, p) — (g, N). These conjugation proc-
esses, which are much more economical than the
CR manipulation process, are described in Sec. 5.

We consider next the (I, », ¥) — (I, v/, Y')
selection rules. From Egs. (E2), (D1), (C5), (C6),
and (C7), respectively, we see that %, 9,, 9. conserve
Y;F.raise YtoY 4+ 1;and G, lower Yto ¥ — 1.
From Egs. (C2), (D2), (C8), (D8), (E1), and (E3),
we see that 9. and 4, have exactly the CR’s with
I necessary for (—(1/4/2)9., 9., (1/4/2)9_) to be
viewed as the » = 1, 0, —1 components of a spheri-
cal vector with respect to R;(I). It follows that all
three have nonvanishing matrix elements for
I'=71+ 1,1, and I — 1. Also the » dependence of
the allowed matrix elements is contained [by the
Wigner—Eckart theorem of E;(I)] in a CG coefficient
of the form C(I 1 I' v ' — »»'). Next we observe, by
comparison of appropriate members of Eqs. (C) and
(D) with the corresponding members of Eq. (A), that
. and G. have, respectively, the same tensorial
character with respect to R;(I) as have the generators
F. and G.. Accordingly, the same remarks regarding
I and Y selection rules and »-dependence of allowed
matrix elements as were made for the latter in
Sec. 2 apply equally to the former.

Finally, on enumerating, it would appear that,
within each of the six cases (A, u) — (N, ') to be
examined, there are 18 matrix elements of the
quantities (3.5) to be evaluated. We must, however,
consider this statement more precisely in the light
of the Wigner-Eckart theorems for SU; and Ri(I).
In the former case, the theorem tells us that the
entire dependence of any of the matrix elements
in question on I, », and Y is contained within a
single C'G coefficient of SU; defined uniquely up to
a phase, there being at most one reduced matrix
element in each of the Cases (I) to (VI). In the
case of B3(I), the Wigner—Eckart theorem gives the

21 M. Gell-Mann, footnote 1.
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entire » dependence of any of the matrix elements
in question in the form of a C@ coefficient of Rs(I).
The connection between these last two statements
is afforded by a theorem, discussed by Racah® in
a general context, and by Edmonds'’ in the context
of SU,. The theorem informs us that the CG co-
efficients of SU;, with respect to a basis like that
being used here, each factorize as the product of
two factors. One of these factors is a C@ coeflicient
of R;(I), and the other is an isoscalar factor, depend-
ent on 7 and Y but not ». Since, in all the matrix
elements in question, the former of these is known,
the task ahead essentially is the determination of
the latter. To this end, we introduce notations
which incorporate a great deal of the knowledge
so far accumulated.

NIy Y| e, Wl )
= CT1Tv0NSOR I YN u/ I ¥)
Nl @, D) [N,

Np I'vE1 Y| 9. AplrY)

= FV220J 10Dy £1vDIQ I YN ' I’ V)
XA W@ D (), (F.2)

N I'v3 Y4H1|F NpIvY)

=CTLiIv £IvH)FQAuI ;N ' Y+1)
X WD [N,

NIy Y=1|G Dplv Y)

=CULIy £yl VN ' I' Y—1)

(F.1)

(F.3)

XN W@, [N w), (F.4)
N IvY|YpplrY)
= YAul ;N W 1Y)
XNV (@1 [ (F.5)

The notation (F) applies to Cases (I) to (VI), the
allowed I’ values having been given above. Within
each case there are eight functions to be obtained.
It is to be observed that the functions 4, &, G, ¥,
of Eq. (F) are not defined uniquely by Eq. (F).
They contain the entire I and Y dependence of the
corresponding isoscalar factors, but part or all the
factors of the latter independent of 7 and Y may
be absorbed into the reduced matrix element
A’|| (1, 1) |]Au) to give formulas of the type (F).
The technical discussion of the deduetion of functions
4, F, G, and Y to satisfy Eq. (F) in each of Cases
() to (VI) is taken up in the following sections.

22 G, Racah, Phys. Rev. 76 1352 (1949).

D. LURIE AND A. J. MACFARLANE

4. MANIPULATION OF CR’s

In this section, we illustrate a method of deriving
explicit expressions for the functions g, ¥, G, and Y
of Eq. (F) from Eqs. (B) to (E) with reference to
Case (I) i.e.,, (\, &) = (A + 2, u — 1). It is possible
that more economical procedures could be used;
the method described is in fact that actually used
in treating Cases (I) and (II).

We first approach the I’ = I 4 1 function of
the type A u I Y; A2 u—11'Y).

From the

A2 u—1T+3p+3 V41| --- PpuIs 1)

matrix element of the upper half of Eq. (D10), i.e.,
of [9,, F.] = 0, we obtain, using also Eqs. (B2)
and (F1), the result

(@I + 3)2I + 41
X A p I+L1Y+1; 042 p—1 143 Y+1)
X [BO — ) + [+3Y+1) + 1]
X 3\ — w) + ((+LY+1) + 2]
X B0+ 20) + T+H3Y+1) + 2117
= [l +2)@QI + )Ps(Apul Y;A 42 u—-11+1T)
X [BA —w + I+37) + 1]
X B — w4+ I+3Y) + 2]
X B+ 20) + T+3Y) + 2117

We note that all » dependent factors have canceled
as consistency requires. We note also that certain
factors have been inserted, once on each side of
the equation. This has served to leave Eq. (4.1)
in the form

fd+3Y—1,I-3Y) = fI+3Y, [-}Y),

it being understood that the replacement of 2I by
{I+31Y) + (I—-3%Y) is made where necessary.
It then follows that each side of Eq. (4.2) is independ-
ent of (I+1Y). Hence we have a result of the form

(@I + 2)@2I + DAl Y;A4+2u—114+17Y)
= [ — ) + T+3741)]
X EN —w + (I+3Y+2)]
X B0 + 20) + I+37+2]P
X a\ u I-3Y),

where « is an unknown function. Let us call the
expression inside the heavy brackets of Eq. (4.3)
a(\ u I+1Y). Next, we similarly use the

4.1)

4.2)

4.3)
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A2 u—1T4+3»+3Y—1]--- NplrY) (44

matrix element of the upper line of Eq. (D11),
ie., [9,, G.] = 0 to deduce the existence of a result
of the form

[@r + 2)@I + 3)p*

XIApl Y\ +2u—-11417)

= [BO + 2p) — (I—1Y)]
X @\ + ) + (I-37+2)]
X BEN + w) + 37431
X B\ p I+3Y), 4.5

where B is an unknown factor., Let us call the
expression inside the heavy brackets of Eq. (4.5)
b\ u I—-1Y). Equations (4.3) and (4.5) contain
the entire dependence on I =+ 1Y, and hence on
ITandY,of s\ u I Y;24+2 p—114+17). Accord-
ingly, we can set
(@ +2)@ + 3)PgpI Y;N+2pu—11+17Y)

= [ad p I+ -3V (4.6)
Equation (F2) with Eq. (4.6) actually defines the
reduced matrix element for the Case (I). We can
transfer from it into the right side of (4.6) any
function of A and u without disturbing agreement
with (4.3) and (4.5). However, having made a
“minimal”’ definition (4.6) of a function, S\ p I Y;
A2 wu—1 I+1 Y) consistent with Eqgs. (4.3)
and (4.5), we must take care to respect the definition
of the reduced matrix element which it implies

throughout the rest of our discussion of Case (I).
We may in like manner use the

A2 p—1I-3»+3 Y41 - NplIvY)
matrix element of [4,, F.] = 0, and the
A2p—1I1-3v+3Y—1]| - Nplr 1)
matrix element of [9,, G,] = 0 to derive the result
I — DA I Y;A+2p—11—-17)
= [l — ) + I—3¥-D)]
X [5p — N + I—-%Y)]
X 3 + 20) — —-3Y-D]}
X [BO + 2u) + T+3Y+1)]
X 3@\ + w) — (I+3Y-1)]
X [32A + w) — T+3Y =211 9\, )
= [0 s I-31)]

X [dA u I+3D)] 9\, ). %))
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The presence of the factor y(A, u) relates to the
point in discussion after Eq. (4.6). Essentially the
two steps of our procedure so far effected give the I,
», and Y dependence of the distinct matrix elements
A2 u—1 I+l v+1] 9. A p I » Y). We have
no reason to assume that the reduced matrix
elements defined by taking out this dependence in
the two cases are the same. The factor n(A, p) is
exactly the factor necessary to ensure that the
same reduced matrix element occurs in the lower-
sign case as was (arbitrarily, perhaps, but de-
finitely) introduced for the upper-sign case. The
form of the results (4.6) and (4.7) suggests (A, 1) = 1
or —1. We cannot yet tell which of the two possi-
bilities is required by consistency.

Wegoontorelate FA p I Y;A+2u—1714+3Y41)
to SO I Y; A2 u—1 I+l Y), respectively.
Take the upper-sign case first. We can use the matrix
element \+2 u—1 I+1» Y+2| --- A uI v Y) of
Eq. (D12), [F,, F.] = 0 to derive a result of the
form

@I+ 2%\ pl Y;N4+2u—11+3 Y+1)
= [a\ p IH3D I 0 I-3Y),

with a as given above [Eq. (4.3)], and ¥ an unknown
function. Then we use Eq. (4.6) and Eq. (4.8) to
transform the matrix element

AN+2u—1I4+1pv4+1Y]--- DuDyY)

of Eq. (D16), i.e., [F.,, G.] = — 4., into the following
recursion formula for y:

- V2 =y p I-3Y+1)
X B = N + I-3Y+Dp
X 3@\ + w) + I-3Y41) + 27
— YA p I-3V)3k — N + I-3V)P

4.8)

X Bex 4w + T-3Y4+2)1 4.9)
The solution
YA rI-3Y) = = V2[[lk — N + ([-37)]
X BN+ w +I-3 Y4211 (4.10)

can be obtained easily. We note that Eq. (4.8) with
(4.10) is exactly in agreement with (4.6) as it stands.
This is because we have used an equation, (D16),
directly relating

FApl Y:A+2 u—11+% Y+1)
and
Al Y;A4+2u—11+41 7).
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Tape L (A + 2, p — 1).

(2 +2X2I +3Pg(Apl V;A42u—114+17Y)
= [e(A  I+3Y) b\ p I-3Y) L
o2I(I + VP s I Y;A4+2 u—117)
= oA pI—3Y) (A p I+3Y)F(N + 2 ) + 143 Y1
2121 — 1)} g(Aul ¥;A42u—11-17)
= [e p I—3Y)d(x p I+3Y)]0
@I +2¥5ApIY; N 4+2u—114+3Y+1)
= [a(\ p I+3Y)P v(A p I-3Y).
@IRFApIY; A +2p—-11-3Y+1)
=[c(r p I-3Y)]} (A u I+3Y).
@r+2pgaplY; 2 42p-1143Y-1)
= — [b(Ap I—3Y)]} 6\ p I+3Y).
INGApI Y; N2 u—11-%3Y-1)
= — [dA p I4+3Y)) (A u I—-3Y).
VIYNpIY; A 42u—~1 1Y) =5\ p I—=3Y) s(AuI+3Y).
a(\uz) =[x — p) + 2z + 1]
B = w) + 2+ 200+ 20) + 2 + 2]
bOwuz) = [§(A + 2u) — 2]
(32N + p) + 2 4+ 2)3@2 + p) + = + 3],
e(pz) = [§(p —N) + 2z — 1]
‘[3g = N) + 23O + 2p) — = + 1],
dOvz) = BN + 20) + 7 + 1]
32N + p) —z A+ 1ERN 4 p) -z + 2]
— [2[5(e — N) + 252N + u) + 2z + 2112
— 23O — @) +z + 13BN + p) — 2z + 1]

Next we treat the lower-sign case in a parallel
manner. We obtain

@DA I Y;N+2u—11-% Y+1)
= [ e I=3V)P6 u T+3V)0(\, ),  (4.11)

with d as in Eq. (4.7), and § obtained by solution
of a recursion formula in the form

8 p I+3Y) = ~V2[BO — ) + T+3Y+1)]
X 3@\ + ) — J+H7Y-DII, .12

and n(\, u) the same factor as in (4.7). The factor
n(\, u) is present here because (4.11) and (4.12)
are in exact agreement with (4.7) just as (4.8) and
(4.10) are with (4.6).

We observe that the respective matrix elements

A2p—1TE£1p Y42 - NpIrY)
of [5,,F.]=0

have been used in the evaluation of F(A p I Y'; A42
p—1 I4% Y+1). Both these quantities ocecur
in the corresponding I — I matrix element, which
therefore can be used to evaluate n(A, u). Use of
Eqs. (4.8) and (4.11) leads to the reduction of the
ensuing equation to n(A, x) = 1. The fact that
everything else cancels out of the equation affords
a check on the consistency of the calculations so far

D. LURIE AND A.
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performed. From this point, we can move rapidly
to the completion of the treatment of Case (I).

In search of the unknown functions (A u I Y;
A2 u—1IT Y)and YA u I Y;A+2 u—117),
we next evaluate the A\ 4+2u—11»Y|.-- AulY)
matrix element of (D9), ie., [F,, G.] = 9, + 3.
Results (4.8) and (4.11) with » = 1 and Eqs. (B10)
and (B11) constitute the input for the left side.
CG coeflicients of R;(I) do not cancel out; we
obtain a term independent of » and a term propor-
tional to » on each side, these being the Y and 4,
terms, respectively, on the right. Putting v = 0,
gives the result

V2YNp I YA 4+2u—117)
=yApI-3Y)6(A p I+3Y), (4.13)

with v and & as given by Egs. (4.10) and (4.12).
Since the terms independent of » are equal, the
coefficients of » on each side must also be. From
this, we find

2V2[IT + DA I Y3 +2u—117)
= YA pI-3Y)o(\ u I+3Y)

X BOA+ 2w+ 14+3Y]). 4.14

TaBLe II. (A — 1, u — 1).

[@er +2)eI +3s(aul ¥Y;x~1pu-11+17)
= [p(A s I+3Y) g(A p I—3Y )]0
220 + 1) g ulI Y;2a—1p—117)
=p(Ap I—=3Y) oA p I+3Y)[3(u—2) —} YL
212 — 1 s(AulIY;A=1u—11-17)
= — Ao I=5Y)s(A u I+3Y7).
@I +2RFANp I Y;A~1 p—1T143Y +1)
= [p(: p I+35Y)]} p(A p I —3Y).
CI¥FAuIY; A—=1pu—11-3Y+1)
= [r(Ap I=3Y)P o(X p I+3Y).
@I +20gAplIY; N1 u—114+3Y-1)
= [gA p I=3Y)P (X u [+3Y).
@CINgApIY; \=1p—-11-3Y-1)
= — [\ p I+3Y)]} p(A p I -3Y).
VZYAp I Y;a=1pu—11I7Y)
= —p(ApuI—3Y) o(A p I+3Y).
p(pz) = B —w) + 2 + 1]
X[E2N + p) — =32\ + u) — 2 - 1]
qwz) = [3(p =N + 2z + 1]
XIHA + 20) — )3\ + 2u) — z — 1].
rQuz) = [$(pg — 7)) + =l
XEBEN 4+ p) + 2 + 1N + ») + 2l
s(auz) = [3(A — u) + 2]
XBO A+ 2u) + = + 1O + 28) + 2]
o) = — 2N + ) + 2 + 1[EON + 20) — 2]]1
o(uz) = — 232N + p) — 2]3(Z + 2u) + 2 + 1]]4
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The simplest way to obtain G\ u I Y; A+2 p—1
I+1 Y—1) is to use Eq. (D7), ie., G, = [G+, Y]
We find

@I+l VA +2u—1T1+3YV-1)

= —[bQA p I-3T6\ p I +3Y), (4.15)
@D\ p I Y 4+2u—11-32Y-1)
= —[dO o I+3V) v\ w I—-3Y). (4.16)

The results for Case (I) are collected into Table I.
We note that there are available a wide variety
of checks on them and comment that we took
advantage of several of these.

Case (IT) is treated in like manner leading to
the results displayed in Table II.

5. CONJUGATION PROCEDURES

We start with awremark that is relevant in connec-
tion with each of the conjugation procedures.

It can be readily verified, by Hermitian conjuga-
tion and rearrangement of Egs. (C) to (E), that
the ordered set of quantities

(6.1)

have the same CR’s with the generators of SU; as
do the ordered set of components (3.5) of the
original octet operator. We can therefore say that
the set (5.1) are the components of an octet operator
adjoint to the given one. It is to be noted that
definition of a Hermitian octet operator, one whose
components satisfy

8. =4,y =y, 9. = £G:, (5.2

is possible. For the general octet operator, we have

t t t
glt} (y?: 9; ’ :‘394’ ’ :FS:*

=g, 3"

Tasie ITL. (A — 2, u 4 1),

SAplIY;A=2p+11+17)
= =[@I +1)/@I + 3 s(A—2 p+1I+1 V;AulY).
SApIY;A—2u+117)
=gA=2u+1IY;AplY)
IApIY;A=2p+1I1-17)
= —[2] + 1/@I - 1 s(A=2 p+1 I-1V;ApIY).
FAplIY;A=2u+1I+3Y41)
= [(2I + 1)/(2] + 2)]} G(A—2 u+1 I+} Y+1 AplY)
SAplY;A=2p4+11-3Y+1)
= —[@2I + 1)/ GA-2 p+1 I-3 Y+1; 2l Y).
SApnlIY;A—-2u+1I14+37Y-1)
= —[(2I + 1)/2I + 2)}
XFA=2p+1I4+3Y—-1;Ap1Y).
SO plIY;\—2u+11-3Y-1)
= —[2I + 1)/(2)}
XFA-2p+1I-3Y—-1;aulY)
YA p I V;A—2u+117)
=YA-2u+1TY;AplY)
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Tase IV.(A + 1, u + 1).

IOl YA+l p+11417Y)
= —[(2I +1)/I + 3t s(A+1 u+1I+1Y;AplY)
IAplY;A+1u+117)
=dA+1u+1IY;AplY)
SApul YA+l pt+11-17)
= —[2I +1)/2I — )i g(A 41 p+1I-1Y;2ulY)
FAplIY; A1l p+H114+3Y+1)
=[2I +1)/2I + 2P GO+1 p+1 I+3 Y+, Al 7).
FApIY; N+l p+11-3Y+1)
= —[2I + 1)/ g +1 p+1I-3 Y +1;Apl TY).
SApIY; A\l pu+114+3Y-1)
= —[2I + 1)/l + 2} FA+1p+1I4+3Y—1;Ap 1Y),
SApIY; A+l pu+11-3Y~-1)
=[Q2I +1)/RIP O+ p+1 I-5Y -1 ulY).
YApIY;A4+1p+117)
= YA+l u+1IY;AplY).

expressions for nonvanishing matrix elements

analogous to those of Eq. (F). For example, using

(5.1) and (F3), we get

£\ ' I v} V41| G AulvY)

=CI3I'y £3vENFQA I Y; N W' I’ Y+1)
XNl @) [Nwy, (63

where (\" p'|| (1, 1) [A uY is a different reduced
matrix element to that in (F3). For a Hermitian
octet operator it will be the complex conjugate of
some (X" '] (1, 1) |[X @).

We may now easily deduce the results under
Case (III) from those already obtained by manipula-
tion of CR’s under Case (I). A single illustration
will be more than sufficient to explain the procedure.
We treat the I — I 4 1 element of 4, under Case
(III) as follows:

A=2p+1T+1v+1 Y9, NpIrY)
=QAulv Y| o] N=2u+1I+1p+1 V)*
= (+2a—11-15-1Y|9] |Rals P)*
=V2e(I1I-17 -15-1)

XIAgIY;X+25-11-17)
X A+28-1] (1, 1) |[x gy

= [22 — 1)/@I + DPcI-11135-117)
XINglY;X+op—11-1Y)
X A+28-1{] @, 1) []A g)*

= [2Q2I + 1)@ + HCT 1 T+1v1v+1)
X IA—=2pu+1I+1V;AplY)

X A—=2 p+1]] @, 1) | w). (5.4)
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Taprie V.(A - L, g + 2).

SApIY;A—1pu+2141F)
= [(2] + 1)/(2I + 3)}t s(u+2A—11+41 —¥;url ~¥).
SApIY;A=1p4+217Y)
= gpt2A=1T =Y;url =Y.
A pIY:a—-1p+27-1Y)
= [(2F + 1A — 1) a(p+22—1T-1 =Y;u)r] -7
Shpl¥; 2 —1p42 I4+} F+1)
=2+ AT +2 Flu+2 v—-1T+3 —Y—1;20] -V}
FApI Y;a=1pt21-5§ Y1)
= [(2I 4+ 1)/@D1 §(u+2 A1 T} ~Y=1; g2 T =¥),
G IY; A=1p42144 Y1)
= ~[(2I 4+ 1)/(2] + 2)}
X Qu+2A~114} =Y+1; 421 =¥
A eI ¥V;A—1p+2 1~} Y—1)
= ~[(27 + 1)/(2D)]}
X G2 A~1T—% =V+i;prl -Y)
YrpIV:ra-1p4+217)
= —Yput+2A—1F ~F;url ~Y)

In step two of the above, we introduced a convenient
relabeling of states; in step three, Egs. (F2) and
(5.1); in step four, symmetry properties’ of the
C@ coefficient of R:(I). Finally, in the fifth step,
we restored the original labels, and made the
definition

Aell 4D -2 pt1)*
=0=2p+U] DI, (65
which is adhered to throughout the treatment of

Case (III). From Eqs. (5.4) and (F2), we immediately
deduce the desired result

SQAuI Y;A=2u+114+1Y)
= —[@I + /@I + 3)
X IA—2u+1 141 ;21 Y), {5.6)

the right side being already known. Other entries
in Table III arise in like fashion.

We turn now to the deduction of the results of
Table V from those of Table IIT by means of B
conjugation. We use the antiunitary operator B
to effect the transformation of an IR (A, u) of SU,
into the IR (u, A\) which is complex conjugate to
it but not equivalent to it unless A = p. A more
transparent statement having the same content is
that R is the operator which effects the reflection
of the weight diagram of an IR of 8U; in the origin
of weight space. The antiunitary operator R
satisfies™

2 For a discussion of antiunitary operators see E. P.
Wigner, Group Theory (Academic Press Inc,, New York,
1959), p. 325, and A. Messiah, Quantum Mechanics (North-
Hoélsa‘:)’nd Publishing Company, Amsterdam, 1962), Vol. II,
p. .
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R*=1, R =R. 5.7

Its effect on the basis of the IR (A, u) of SU; is
given by

ANpIvYy—RMAulyvY)
=eAuls V)| pdl —» -Y), {5.8)

where » is & real phase, dependent possibly on all
of the indicated arguments. The effect on the
generators of SUj is given by

M — M, = RMR, (5.9)

where M is a member of the set (2.6). We must
arrange the details of Egs. (5.8) and (5.9) to satisfy
two eriteria. The first is that (5.9) should preserve
the CR’s [Eq. (A)] of SU;. The second is as foliows.
Given any IR (), u) of SU, and the general formulas
(B) for it, we must be able to uee Egs. (5.2) and
{5.3) to deduce results in exact agreement with
formulas (B) for the IR (u, A). These criteria do not,
it transpires, fix w uniquely. Any choice consistent
with them however will serve our needs. In virtue
of the antiunitary nature of R, we have the condition*

Qpl'v Y |M NplrvY)
=ohpulv Vel ul v ¥Y)*
XAl —y =Y| M a2 T = =Y. (5.10)

We may use this to prove that if the CR-preserving
choice

Yp = ""Yy (Is)k = "'Iu (511)
(I+)R = ""I...., (F*)R = :FG:F
is made, then
w = o\, p(—) (5.12)

is & permissible choice for w. We note® that (» — ¥)
is necessarily integral for those IR’s of present
interest [ie., those which satisfy A = u (mod. 3)},
so that then w(), u) is real. We also observe®® that
R effects an outer automorphism of SUs,,

Given the behavior (5.11) of the generators (2.6)
under R conjugation, it is necessary, in order that
the definition [Egs. (C), (D), and (E)] of the
components (3.5) of the octet operator be preserved
by R conjugation, that the results

2 Using Eq. (XV, 22} of Messiah (footnote 23), we write
the definition of the adjoint AY of an antilinear operator as
¢ (At 1)) = (u| (4 1)), where |u) and [{) are any two states, If
[@) = B (u), D) = R[t), and |s) = M |#), with M a linear opera~
tor belonging to the set (2.6), we can develop (u| RMR [t) =
Cu RRls)) Ef ] (B Jw)) = (s | %) = {{| M* |&). Here we have

use .

2 See Ref. 10, Sec. 2,

28 1, C. Biedenharn, J. Math, Phys. 4, 436 (1963), Ap-
pendix.
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Yr = =Y, (91)R = —4,,

9:s)r = —9_, F.)r = FG=
hold. We may now exhibit how the results of Table V
can be generated from those of Table I with the
aid of a single example. As before, we take the
I — I 4+ 1 element of 9. and develop

A=1pu4+2I+1p+1 V|9, NpIvY)

= oA pu v Vo(\—1p+2 [+1v+1 Y)*

X WAI -y =Y| 9! |p+2A=1 141 —p—1 =Y)
= —V20(I+111 —v—1 —1 —)

X S(u+2A—=1I+1 =Y;urI =Y)

X o\, We—1, p+2)(u N[ (1, 1) |ju+22-1Y

= —[2I + 1)/@I + )PCUT 1 I+1v1s+1)

X I(u+2N—=11+1 =Y;urI -Y)

X A\—1 p+2|| (1, 1) ||\ ). (5.14)

Herein, in the first step, we have used Eq. (5.10),
(5.13) and (5.1); in the second step, Eqgs. (F2) and
(56.12); in the third step, we have used symmetry
properties of the CG coefficient of R3(I) and defined
a reduced matrix element. We adhere to the defini-
tion there made throughout our treatment of
Case (V). Equations (F2) and (5.14) now give

IAul YA —1u+214+17)
= [@I + 1)/@I + 31
Xp+2r —1T+1=Y;u\]=-Y). (5.15)

(5.13)
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Taste VIL.(A + 1, p — 2).

IAp I YA+l p—21417)
=[2I + 1)/2] +3} s(u—27A+1T+41 —=Y;urI =Y).
SApIY;A+1pu—-217)
=9d(u—2A+1I-Y;purl -Y).
IANplIY; A1 u-21-17)
=[2I +1)/2 — 1)} s(u—2A+1T—-1 —Y;url -Y).
FApIY; N1 p—214+3 Y1)
= [(2I + 1)/2I + 2)}*
X Fu—2N4+114+3 —Y-1;pNI =Y).
FAplY; A4+l p—21-% Y41)
= [(2I + 1)/QNE F(p—23+1 11— —-Y -1, -Y).
SApIY; A1 u—~21+% Y1)
= —[(2I+1)/(2I + 2)}i
X Gu—2 A+l I+3 —F+1; 4] —F),
SApIY; A4l p—-271-37Y-1)
= —[(2I + 1)/ gu—2A+11-% =Y +1; 0] =Y).
Yrp I Y;A+1pu—-217)
= —Yp = 2N+ I =Y;urI =Y.

The right side is known from Table III. In this
manner, Table V arises.

Similarly, from Table II we can generate Table
IV by Hermitian conjugation, and from Table I
we can generate Table VI by R conjugation.
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Generalized Shmushkevich Method: Proof of Basic Results*

A. J. MacrARLANE, N. MukunDpa,}f anD E. C. G. SuparsuaN]

Department of Physics and Astronomy, University of Rochester, Rochester, New York
(Received 29 October 1963)

We here derive certain orthogonality properties of the Clebsch-Gordan (CG) coefficients of an
arbitrary compact group G. Our discussion recognizes the fact that the irreducible representations
(IR’s) of @ need not be equivalent to their complex conjugates and that the same IR can appear more
than once in the reduction of the direct product of two IR’s of @. The properties obtained allow the
development of a generalized Shmushkevich method for directly writing down consequences of the
invariance of particle interactions under G. The discussion given is sufficiently general to apply to

the currently interesting cases of SUs and Gb.

1. INTRODUCTION

HE aim of this work is to exhibit the proofs
of certain facts concerning compact groups and
their Clebsch-Gordan (CG) coefficients which
are used in the development of the generalized
Shmushkevich method for writing down con-
sequences of the invariance of the strong inter-
actions with respect to a given compact group.
We commence with an explanation of this method.
Shmushkevich' originally described the method
now known as Shmushkevich’s method in connection
with the charge-independent theory of the strong
interactions. It is a technique for writing down
linear relationships among the cross sections for
various elementary-particle reactions that exist as
8 result of the assumption of charge independence
or invariance with respect to the isospin rotation
group, R;. Simple expositions of it with examples
may be found in recent books on elementary-
particle physics.” Its notable characteristics are its
economy, particularly in complicated physical con-
texts, and the fact that it proceeds without the
use of (and therefore without the need for know-
ledge of) numerical values of CG coeflicients of R,.
Formal proof® of the results which underlie the
method depends only on certain general properties
of CG coefficients of R, to be noted below.
In view of the great interest currently surrounding

* Research supported in part by the U. S. Atomic Energy
Commission.

t On leave of absence from the Atomic Energy Establish-
ment, Bombay, India.

1 On leave of absence during the academic year 1963-4
at Institiit fiir Theoretische Physik, Universitit Bern, Bern,
Switzerland.

( 1 I3 M. Shmushkevich, Dokl. Akad. Nauk SSSR 103, 235
1955).
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for a Charge Independent Theory: Nucleon—-Anti-Nucleon
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the theories*® which use SU, and @, as invariance
groups of the strong interactions, it is desirable to
possess a generalization of Shmushkevich’s method
for these theories. Provided we assume that those
properties of CG coefficients of B, which were used
in the justification of the method for R, generalize
to SU; and G, we can proceed directly to the
development of the generalized Shmushkevich
methods for SU; and G,. Several illustrations have
already been given of how consequences of SU, and
@, invariance may be written down by the method:
relationships between decay weights for the decays
of certain resonances that exist as a result of SU,
invariance® or G, invariance,” relationships between
meson-baryon scattering cross sections that exist as
a result of SU; invariance.®

The two properties of CG coefficients of R,
used in the justification of Shmushkevich’s method
for R; are the following®:

(1) Orthogonality
Z C(j1g=4; mamam)C(yfag’; mymam')

mims

= 805" é(mm7);  (1.1)
(2) Modified orthogonality"’
2 Clujsi; mamam)C(ilgof; mimam)
= [@7 + 1)/, + DI8G)s(mam)).  (1.2)

The modified orthogonality rule arises from the

4Y. Ne’eman, Nucl. Phys. 26, 222 (1961); M. Gell-
Mann, Phys. Rev. 125, 1067 (1962); S. Okubo, Progr. Theoret.
Phys. (Kyoto) 27, 944, 28, 24 (1962).

§ R. E. Behrends and L. F. Landowitz, Phys. Rev. Letters
11, 296 (1963).

¢ C. Dullemond, A. J. Macfarlane, and E. C. G. Sudarshan,
Phys. Rev. Letters 10, 423 (1963).

7 A. J. Macfarlane, N. Mukunda, and E. C. G. Sudarshan,
Phys. Rev. 133, B. 475, (1964).

8 E. C. G. Sudarshan, Proceedings of the Athens Conference
on Newly Discovered Resonant Particles, edited by B. A. Munir
and L. J. Gallaher (Ohio University, Athens, Ohio, 1963).

® We use the notation of M. E. Rose, Elementary Theory
t{fg‘) gi%r)ngular Momentum (John Wiley & Sons, Inc., New York,

10 J, M. Blatt and V. F. Weisskopf, Theoretical Nuclear
Physics (John Wiley & Sons, Inc., New York, 1952), p. 791.
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ordinary orthogonality rule by means of the sym-
metry property

C(ujed; mimam) = (")i”m[(gj + 1)/(2j, + 1)]5

X C(jjef; —m my —my).  (1.3)
In this paper, we define CG coefficients for an
arbitrary compact group, and establish that results
analogous to Egs. (1.1) and (1.2) obtain, so that
a generalized Shmushkevich method may indeed
justifiably be used to write down consequences of
invariance with respect to any compact group, in
particular with respect to SU; or G, That an
orthogonality rule like (1.1) obtains is to be expected.
It is not obvious although true, however, that a
natural generalization of (1.2) exists. Indeed the
opposite might be expected since a natural general-
ization of (1.3) does not exist—e.g., (1.3) for R,
has to be replaced by 2 complicated crossing relation
for an arbitrary compact group. The reason for this
stems from the fact that the representation theory
of R; is simpler than that of an arbitrary compact
group in two important respects. These are as
follows:

(A) An irreducible representation of an arbitrary
compact group need not be equivalent to its complex
conjugate.

(B) The direct product of two irreducible rep-
resentations of an arbitrary compact group may
contain the same irreducible representation more
than once in its reduction.

For R, neither (A) nor (B) can occur. Since for
SU, both (A) and (B) can occur'’ and do in prac-
tically interesting cases, the relevance of the present
discussion becomes clear,

Among previous literature on the subject, we
note that Wigner' has discussed CG coefficients
of finite groups which do not allow either (A) or

1 Tn the currently popular form of unitary symmetry
theory41? the baryons, pseudoscalar and vector mesons,
are classified according to the octet or IR (1, 1) of SUs, and
the spin-4 baryon resonances are classified according to the
decuplet or IR (3,0). The direct product of two octets con-
tains an octet twice—a fact which reflects the possibility of
constructing two independent Yukawa-type meson-baryon
interactions. The IR (3,0) is not equivalent to its complex
conjugate, but to the complex conjugate of the IR (0,3). The
notation used here for IR’s of SU; is explained in Ref. 13.

128 L. Glashow and J. J. Sakurai, Nuovo Cimento 26,
622 (1962).

13 A, J. Macfarlane, E. C. G, Sudarshan, and C. Dulle-
mond, Nuovo Cimento 30, 845 (1963).

u R, P, Wigper, Am. J, Math 63, 57 (1941), and “On
the Matrices Which Reduce the Kronecker Product of
Representations of Simply Reducible Groups’ (unpublished).
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(B), and that Sharp'® has discussed the same
problem for compact groups and also for compact
groups for which (A) but not (B) can occur. On
the other hand, Hamermesh'® has discussed groups
which allow (B) but not (A). We here use the
notation used by Hamermesh and refer to his book
for many of the general properties of irreducible
representations of groups used in the ensuing sections.

The material of the paper is presented as follows.
In Sec. 2, we mention various facts regarding the
representation theory of an arbitrary compact group
and define its CG coeflicients. In Sec. 3, we derive
the desired generalizations of Eqgs. (1.1) and (1.2).
Sec. 4 contains an illustrative example.

2. SIMPLE PROPERTIES OF IR’s
AND CG COEFFICIENTS

We consider an arbitrary compact group G with
general element E. Since G is compact, each of the
IR’s is of finite dimension and equivalent to a
unitary IR. Thus we may confine attention to
unitary IR’s of G, i.e., to D*(R) which satisfy

D*R) = D"®)™. @.1)

Here we use as a labeling of the IR’s of @ a single
lower-case Greek letter u, », p --- , which may
in fact stand for several labels. For example, we
may write

P"=(F1;F'2; "'ﬂl)

in the case of the IR of highest weight u of { compo-
nents if G'is of rank .

We do not assume that the IR D*(R) is equivalent
to its complex conjugate D*(R)* which is still
however an IR of @, but set

DRy = JW', DR (W, m),  (2.2)

where J is unitary and independent of R."” We
shall apply primes to lower-case Greek letters
always exactly in this sense and never at all to
other letters. It is obvious that passage from D*(R)
to D*'(R) is an involution, so that D*''(R) = D*(R).
Also,

J(u, p') = '7(1‘,1 ﬂ)’ (2°3)

where the tilde denotes transposition. We may
summarize the situation by saying that the set
{-++ u v p---} of all IR’s of G is the same as the
set {--- w', v, p° -}, possibly in a different order.

15 W. T. Sharp, “Racah Algebra and the Contraction of
Groups,” CRT-935, Chalk River, Canada, 1960.
' M. Hamermesh, Group Theory (Addison Wesley Pub-
lishing Company, Inc., Reading, Massachusetts, 1962). See
especially Chap. 5 and Sec. 7-14.

17 The matrix J plays a role for the general compact group
analogous to that played by the “1 — j symbol’’ for R,.
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We go on to consider the direct product
D*R) ® D'(R) 2.4)

of a pair of IR’s of G. Since @ is compact, we know
that this is equivalent to a direct sum of IR’s of
@, possibly containing several IR’s more than once.
We may use

D'R) @ D'(R) = 2., wp)D'(R)  (2.5)

to define (uvp) as the number of times D*(R) occurs
as a direct summand in the reduction of (2.4).
Allowed values of (uvp) are 0,1, 2 --- . We have

(wp) = (up). (2.6)
If D*(R) has character x*(R), Eq. (2.5) implies
XBR) = 2, woX'(R). 2.7)

We may use the orthogonality relation for characters

[ @@y ik = asw), @8
where A is a normalization constant and the integra-
tion is the usual left- and right-invariant integration
over the group manifold of G, to give

(o) = 47 [ VEWEWE* R, @9)
Hence using the consequence
xX*(R)* = x"(R) (2.10)

of Eq. (2.2), we may deduce the important result

(wp) = (p'vu’). (2.11)

We now define the CG coeflicients of @ for the
direct product (2.4) and show that they are the
elements of the unitary matrix which generates the
similarity transformation that brings the direct sum
on the left side of (2.5) into equivalence with the
right side. If n, is the dimension of D*(R), suppose
¢*; with j standing for a set of labels which take
on n, distinct sets of values is an orthonormal basis
in the representation space of the IR u. Under R,
we have

v > Ory"; = ¢".D*(EB);. 2.12)
Here we are using summation convention for Latin
indices but not Greek ones. Similarly, ¢’ is an
orthonormal basis for the representation space of
the IR », so that the products y*", are the basis
functions for the product (2.4). Reduction of this
product into a direct sum of IR’s D*(R), various p,
involves a unitary change of basis wherein we replace
the products ¢*¥": by sets of basis functions ¢*;
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which transform according to D*(R),

\l/pl —1_: 03‘0‘,1 = lpmep(R),,,l. (2.13)
Since (uvp) > 1 is possible for a given p appear-
ing in the reduction, there can be more than one
independent set of n, basis functions ¢¥*;. To distin-
guish these we add a Latin capital label (to which
summation convention does not apply) to the basis
functions, e.g., y**;, there being (urp) allowed
(sets of) values for the (perhaps composite) label A.
We demand that basis functions y**, for different
A be orthogonal. Also we arrange' to have

'V’Al —; OR'//,A‘ = \bPAmDP(R)mH (214)

with D*(R),., independent of A. We may define
¥4 explicitly by setting

'I’MI = KV:"Vk(ﬂj: vk | PAl); (2~15)

where
(uj, vk | pAD) (2.16)

is the generalized CG coefficient of @ for the product
(2.4). We may also give an inverse to Eq. (2.15) in
the form

Vid's = ZA: VoAl | ujy k),  (2.17)

where the quantities
(0 AL | uj, vk)

are elements of the matrix inverse to that with the
CG coefficients (2.16) as elements, i.e.,"

(wj, vk | pAD(eBm | uj, vE)
= 8(po)6(AB)5(lm), (2.18)
; (ujy vk | pAD(pAL | up, vg) = 3(jp)o(kg). (2.19)

We can now exhibit that the CG coefficients (2.16)
are the elements of the

nm, = ., (wom, (2.20)
-dimensional matrix of the similarity transformation
which brings the direct sum on the right of Eq. (2.5)
into equivalence with the direct product on the left.
We apply Or to (2.17), use (2.15) and cancel the

product basis functions, as they are linearly in-
dependent, obtaining

D*R),;D’(R)u
= f/; (1P, vq | PADD’R)1n(pAm | pj, vk), (2.21)

which demonstrates the equivalence.

18 Ref. 16, p. 150.
19 Ref. 16, p. 149,
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We should stress the fact that there is a great
deal of arbitrariness® in the definition of the CG
coefficient of G for the product (2.4) if for given p,
(uvp) > 1, so that there are several orthogonal sets
of basis functions ¥*4;. This is because we can make
unitary transformations with respect to A for fixed
p without disturbing the explicit reduction of the
product (2.4) or the orthogonality of the sets ¥**;
with different A. Fortunately, we do not have to
dwell on this arbitrariness in our work.

We now proceed to obtain analogs of Egs. (1.1)-
(1.3) in terms of the quantities (2.16).

3. GENERALIZATION OF EQS. (1.1)=(1.3).

The generalization of (1.1) is immediate. As the
matrix of CG coefficients is unitary, we have

(uj, vk | pAD* = (pAl | pj, vk),
so that (2.18) becomes
(ujy v | pAD (g, vk | oBm)*
= 8(p0)8(AB)8(Im),

which is the required generalization of (1.1).
To generalize (1.3), we need a lemma.

Lemma. The direct~-product representation
D*(R) ® D’(R) contains the identity representation
O only if » = y, and then only once.

The corresponding normalized wavefunction is

0 = T, 0t s (3.3)

The first part of the lemma follows (2.9) and
(2.8) on setting p = 0 and x°(R) = 1. To verify
the statement that the ¢ as given by (3.3) is the
correct invariant basis function, we use Egs. (2.1),
(2.2), and (2.14) as well as the fact that J(u, u')
is unitary, in the following way:

O = T, gl
“: J(u, p’),.,,D”(R),,.,-D"'(R),,‘x[/",,.tlz"',

= J', s D" B)mi (', i)in
X D*R)*J (', 1) el 'y
D*(R)n D*(R)* w3 (1, 1)t W'V s
= TG, 1)t = 9.

3.1

3.2)

\ Fi1c. 1. The (u») o' — p o' — 0 coupling.

20 Ref. 16, p. 261.
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Fic. 2. The u (#0') — p ' — 0_coupling.

The normalization of ¢‘® follows from the unitarity
of J (u, u'). Thus the proof of the lemma is complete.

Suppose now we have three sets of basis functions
¥*;, ¥ and ¢*; together with their associated
matrices D*(R), D’(R), D*'(R). We seek combina-~
tions of the product functions ¢*3’wW’ ; that are
invariant under G. In general, a whole subspace
of such combinations exists. We can build a basis
for this subspace in the following manner. From
the lemma it is clear that in an invariant linear
combination of products, whatever multiplies the
¥*';, must be a quantity of the type ¢*,. That is,
we must first combine the products ¥*’; to a
wavefunction of type p, and then corbine that with
the y*'; to get an invariant. Thus we arrive at a
set of (uvp) orthonormal invariant states labeled by
a letter A4,

) = J(p, p")milug, vk | pAm)IY* "t (3.4)

These states form an orthonormal basis for the
manifold of invariant states in the triple-product
space. We may represent Eq. (3.4) schematically
as in Fig. 1.

It is clear however that we must obtain the same
manifold if we start by coupling the ¢*';, and ¥’
to form states of type ¢*'%,, and then combine
these with y*; to form invariant states ¢°%. In this
way, we get

(n“)§¢08 = J(}L, #,)im‘p“i(P,l’ Vk | “,Bm)‘l’p,llp'k' (35)

This may be represented as in Fig. 2. Since y°*
and ¢°” span the same subspace of the triple-product
space, there is a unitary transformation connecting
them, so that we have

P4 = 35 M(uwp)ass’™® . (3.6)

We now insert (3.4) and (3.5) into (3.6) and obtain,
after dropping the linearly independent product
functions, the relationship®

(nﬂ)_%‘](P: P')ml(l-"jr vk l pAm)

= 205 M(wp)asm) I, 1)ai(o’l, vk | wBn). (3.7)

In the absence of multiplicities, i.e., when (uvp) =
* Following Hamermesh, (Ref. 16, Sec. 7-14), we may

show that the arbitrariness in the definition of CG coefficients

of G may be disposed of in such a way that M (urp) = 1.
We can however proceed without effecting this.
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(o'vu’) = 1, Eq. (3.7) reduces to
)} (o, )mi(ug, vk | pm)
= M)W, W'l vk | u'n).  (3.8)

Equations (3.8) and (3.7)*' exhibit how a crossing
relation replaces the simple symmetry property (1.3)
when IR’s are no longer all equivalent to their
ecomplex conjugates and when (uvp) > 1 is allowed.

It is now a simple matter to derive from (3.7)
the required generalization of Eq. (1.2). To do this,
we first obtain from Eq. (3.7)

(’nﬂ)_i'](p’ P,)Tlao‘py vk I PCQ)*
= ZD M(Mp)fbc(nx)-}-f()\', )\)f,.(p'l, vk | N Ds)*
3.9)

by complex conjugation and relabeling. Then we
multiply corresponding sides of Eqs. (3.7) and (3.9)
and sum over k and [l. First, we note that the
unitarity of J(p, p") simplifies the left side to

(n,)""(ud, vk | pAm)(p, vE | pCm)*;

summation over k and m implied here as always.
On the right side, we first use (3.2) to obtain a factor

8(uN)8(BD)s(ns).

Now the M’s on the right refer to the same triples
of IR’s, and the J’s to the same pair of complex
conjugates of IR’s, so that their unitarity reduces
the right side to

()™ 8(uN) 8(jp) 8(AC).
We thus obtain
(uj, vk | pAm)(\p, vk | pCm)*
= (n,/n,)8(uN) 8(jp)8(AC)

as the required generalization of (1.2).

(3.10)

4. ILLUSTRATIVE EXAMPLE

Justification of the application of Shmushkevich’s
method to SU; is here provided in a simple case
on the basis of the work of the previous sections.

We use the notation (u;, u,) for an IR of SU;,
the integers u, and g, being the components of its
highest weight. Basis states for any IR u = (u, p2)
are obtained as simultaneous eigenstates of operators
which may be identified with I, total isospin;
I, its z component; and Y, hypercharge. Thus in
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place of ¢*; we have |u,u.; I1,Y). It is customary*'*
to associate sets of particles of the same spins and
parities, ‘‘approximately’”’ the same masses, and
appropriate I and Y with such IR’s of SU; in order
to set up a unitary symmetry theory. For the purpose
of illustration let us consider all the allowed decays
of a particle belonging to the IR p = (p,, p.) into
two particles belonging to u and ». Such decays
have matrix elements

(I 1,, Y vL1L,Y,| T oI Y)
= 24 WLILY,, vLI, Y, | pAILYYpA|| T |lp).
4.1

In order to derive the results which correspond to
the Shmushkevich tables used in Refs. 6 and 8,
we must consider the following sums over the squared
moduli of matrix elements (4.1). These are @(I1.Y),
the sum over I,, I,,, Y,, and I, I,,, Y, at fixed
I,1,,Y;and R(I,, I,,, Y,), the sum over I,, I,,, Y,
and I, I,, Y at fixed I,, I,,, ¥,.
We get

QULY)

= 3 3 WLILY L1, Y, | pAILY)pA|| T ||p)
X 208 WL 1LYy, vLL1, Y, | pBILY)*eB|| T |[0)*

= § 3(ABXpA|| T ||pXeB|| T [|p)*

= 24 Kedl| T |9 “4.2)

The sum set first in the first line is by definition
over I, I,,, Y\, I, I,,, Y, at fixed I, I,, Y—just
that required to allow the use of Eq. (3.2). The
result (4.2)—@Q([1.Y) independent of I, I, and
Y—states the equality of the total widths for all
decays for different members of the unitary mul-
tiplet p.
Likewise, we get

R(Ily IIH Yl) = (np/nn) ZA KPA” T HP>I27 (43)

the summation involved in the derivation being, by
definition, just that required to allow the use of
Eq. (3.10). Thus R(l,, I,,, Y,) is independent of
I,, I,,, and Y,, which is just what has been called®
a Shmushkevich theorem for the decay situation.

No further information than is provided by Egs.
(3.2), (3.10) is required for the writing down of
Shmushkevich theorems for more complex situations.
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The notion of strictly intensive observables ig introduced in g theory of local observables (such as
that of R. Haag). If 0,, 0: are two disjoint regions, then the value of a strictly intensive observable
in ©; U 03 is the sum of its values in 01 and .. It is shown that energy—momentum can never be
strictly intensive. This result is used to prove that the algebras of observables is not of Type I for
some regions. By analogy with the energy-momentum tensor density for the free field, the definition
is weakened, so that an intensive observable in a region 0 is only “approximately’’ in @(9). This
leads to the introduction of germs of intensive observables. It is proved that the unitary intensive
operators form g sheaf § of groups, and the Hermitian intensive operators form a sheaf § of Abelian
groups with operators in ¥, and on which the inner derivative ¥ — #{(XY — ¥ X) is defined.

I. INTRODUCTION

QUANTUM field theory describes local systems
by means of local observables, which are
self-adjoint operators and ean be determined by an
experiment performed in a finite region of space
and completed in a finite time. The smaller the
region of space—time, the less scope there is for
maneuver by the experimenter, and so the fewer
are the observables which can be measured. In a
field theory the field itself (suitably integrated with
a test function) is an unbounded operator and may
be an observable, but is not necessarily so. In general,
then, some local observables may be unbounded
operators. For mathematical convenience we shall
work with the algebras of bounded observables,
introduced by Haag.' The connection with field
theory is very elose, but has not yet been rigorously
established. The following axioms will be used; they
have been extensively developed by Araki.”

Aziom 1. To every open set @ of space-time is
associated an algebra @(®) of bounded operators
on a Hilbert space 3. The algebra is generated
from the bounded observables by taking sums and
products with complex coefficients. All weakly con-
vergent limits of sequences of such operators are
also included in the algebra. In other words, the
algebra @(0) is the W* algebra generated by the
bounded observables in ©.

Aziom 2. If O is an open set of R*, define @/(0)
to be the set of bounded operators on 3¢ which

* Research reported in this document has been sponsored
in part by the Air Force Office of Scientific Research OAR
through the European Office Aerospace Research, United
States Air Force.

+ R. Haag in Collogues sur les problémes mathématiques de la
théorie quantz'%w des champs (Centre National de la Recherche
Scientifique, Paris, 1959).

* H. Araki, J. Math, Phys. 4, 1343 (1963).

commute with all the operators of @(0). A theorem
of von Neumann® states that @’(0) is a W* algebra,
called the commutant of @(0), and @’ = @. To any
open set O we define the causally independent set
to be the interior set O where

¥ ={zER/x— 1y’ <0 forall yco}.
Then axiom 2 states

(a) @'(e) = a(e);

(b) @’(0) M @(0) contains only scalars;

() aR") = ®(3), ie., the algebra of all
bounded observables on 3C.

In other words, @(0) is a direct factor, whose com-
mutant is @(0").

These properties have been discussed in connection
with the time-slice axiom. We do not expect G(0)
to be a factor if there are superselection rules in
the theory,” for then there are some operators
which commute with all the observables in © and
all the observables in ©’. The charge is an example
of such an operator. Physically interesting cases
are covered if we assume that all operators defining
superselection rules commute with each other.® The
modifications in the axioms necessary to allow for
this do not change the conclusions of this paper.

Aziom 3. The theory is relativistically covariant;
this means, there exists a unitary representation®
of the inhomogeneous SL(2, C), say {a, A} —

*J. Dixmier, Les algtbres d’opérateurs dans Pespace hil-
bertien (Gauthier-Villars, Paris, 1957), p. 42, ef seq.

‘R. Haag and B. Schroer, J. Math. Phys. 3, 248 (1962).

§ A, 8. Wightman, Nuovo Cimento Suppl. 14, 81 {1959).

¢ For the basic properties of quantum field theory see a
forthcoming book: R. F. Streater and A. 8. Wightman,
PCT, Spin_and_ Statistics and all That (W. A. Benjamin
Company, Inc., New York).
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U(a, A), where U(a, A) is a unitary operator
continuous in the parameters a and 4.

Aziom 4. If U(a) = exp (iP,a"), then P*P, > 0,
P° > 0, and P° = 0 only for the vacuum state ¥,.
It follows that ¥, is the only normalizable eigenstate
of P° or P or P'.

Aziom 6. If {0,} is a collection of open sets in
R*, then

@( U.f);) = [Ui(a’i>]” ,

that is, the algebra associated with the open set
U.0; is that generated by the operators of the
individual algebras @(0;).

Axioms (1)-(5) correspond closely to those of
local field theory.®'” It remains an unsolved program
to prove that there exist local bounded observables
in a general Wightman theory of quantized fields.
We might begin such a program as follows.

Suppose ¢(z) is a local field, © is an open set,
and f(z) is a real test function—zero outside ©—so
that

o) = [ o)@) do

is an unbounded Hermitian operator defined on
the domain D, (of Ref. 7) of vectors in 3C. It has
not been proved that ¢(f) so defined is essentially
self-adjoint. Let us add this as an axiom. The spectral
resolutions E,(A) of ¢(f) generate a W* algebra as
f varies over the set of all test functions zero out-
side @; call this algebra @(0). The main remaining
problem is to prove that the commutativity axiom
holds, namely, if ¢(f) and ¢(¢) commute, so do
their spectral resolutions. It can be shown® that
a sufficient condition is that ¢(f)¢(g) be essentially
self-adjoint. In the present paper we bypass this
problem by working directly from the axioms.

It is worth remarking that if f(x) = 0 outside 0,
then ¢(f) should commute with the operators of
@(0’). We say that an unbounded operator X is
affiliated’ to @(0), and write Xn@(0), if X commutes
with @’(9). Thus we should expect all the fields
in the Borchers class of ¢(z) to be affiliated to
@(0), if they are integrated with test functions zero
outside ©. Any unbounded self-adjoint operator
affiliated to @(0) may be regarded as a local observ-

7 A. S. Wightman, Lectures at the Seminar on Theoretical
Physics, Palazzino Miramare, Trieste, 1962; Theoretical
Physics (International Atomic Energy Agency, Vienna, 1963).

8 A, Devinatz, J. von Neumann, and A. E. Nussbaum,
Ann, Math 62, 199 (1955).

? Ref. 3, p. 17, example 10C.
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able. In the next section we discuss the observables
associated with a symmetry, such as the Lorentz
group. We shall show that the translation operator
cannot be localized in the sense defined here. This
is used to prove that a W* algebra associated with
a translation-invariant region is not of Type I
The question of type was raised by Haag and
Schroer®; W* algebras fall into five main classes™
which, in increasing order of complexity, are I, I.,
I1,, I1., and III. Algebras of Type I are isomorphic
to the algebra of all bounded operators on some
Hilbert space X; the algebras of Types II and III
are not. In Sec. 3 intensive observables in local
field theory are briefly discussed. This suggests the
definition of intensive observables used in Sec. 4,
where unitary and Hermitian intensive observables
are defined as germs. Here the basic group properties
are established. In Sec. 5 we prove that the germs
of intensive operators form a sheaf.

The interpretation of the mathematical opera-
tors in physical terms is often a problem as difficult
as fixing the dynamiecs. If X € @(9) is an op-
erator with a certain physical interpretation, then
U(a, A)XU(a, A)™! is the observable whose inter-
pretation is the Lorentz transform of X. This means,
in particular, that U(a, A)@(0)U(a, A)™" = @(0,.4),
where 0, is the set of points

Ous = {&/A7'(z — a) € 0}.

It is easy to find the physical interpretation of
the infinitesimal generators of a symmetry group;
these observables are conserved in time, and, in
their study, it suffices to discuss a spacelike surface
o(t), say the plane { = 0.

In Axiom 2 we defined the “causally independent”
set of a given set O to be the set @’. We call 0" = (')’
the causally dependent set. Then Axiom 2 implies
that @(®”) = @(©)”, which in turn means that
@(0) is defined by an open set, " say, in R® lying
on a spacelike surface o, such that ©°"' = ¢”. In
the following, © will mean an open set in R® located
at ¢t = 0, and @(0) will mean @(0").

II. STRICTLY INTENSIVE OBSERVABLES

If an observable X is conserved in time, we might
expect that for each subdivision of space (at the
given time ¢ = Q) into open sets O, such that R® =
U,(8;), we have

X=2X, (1)

10 J. Dixmier, Les algtbres d’ opérateurs dans Despace
hilbertien (Gauthier-Villars, Paris, 1957).
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where
X € @©,). @

If X is an unbounded operator, we may postulate
instead of (2)

X:1G(0). ®3)

An operator X with these properties is said to be
strictly intensive provided that the X, have the
physical interpretation of a measurement of X in
region O;. In the case of observables defined by a
symmetry, the physical interpretation is clear, and
we are able to give the following

Definition: If U is a unitary symmetry operator
defining an observable X, we say U(or X) is strictly
intensive if for every local algebra G(0) invariant
under U there exists a local operator U(0) € @(0)
such that

USU™ = U©SU@©™ )
for all 8 &€ @(0).

The physical interpretation of U(0) as the local
value of U is fixed by (4).

We remark that symmetries defined by anti-
unitary transformations cannot be included in this
way. These symmetries are anyway less interesting
because they do not give rise to conserved Hermitian
observables.

Theorem 1. If a unitary operator U has a local
value U(9), then U(0) is unique up to a factor.
Further, U commutes with U(0), and, if 0, and
0, are disjoint and the factor is suitably chosen,

U@, Vo) = U©)U@©,).

Proof: Putting 8 = U(0) in (4) proves that
U commutes with U(0). Suppose, if possible, two
operators U,(0), U.(0) satisfy the conditions. Then

U,(©8U,(0)™" = U,(0)8U,0)?,

8 € @&(0), ie, U;’U, commutes with S, and so
lies in @’ as well as @. By Axiom 2, U;'U, must be
a scalar. Now suppose S, € @(0,), 8. € @(0,),
and let U, = U(0,), U, = U(0,) be the values
of U in 0,, 0,. Then

U,U,8,U;'U;" = U8, U = US, U™,
U,US.U;'Urt = UnS,U;* = US,U™.
Therefore, for any polynomial 7, in S, and S,,
u.U.T.U0;'U; = UT, U™
Now let T, — T weakly. Then U,U.T.U;'U;’
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converges weakly to U,U,TU;'U;* and UT,U™!
converges weakly to UTU ™}, and T € @(0, U 0,).
In fact every T € @(0, \J 0,) is such a limit."
Clearly U,U, € @(0, \J 0,), and satisfies the
condition 4 for © = 0, \U 0.. Since this defines an
operator uniquely,

Ue, v 02) = U((‘),) U(oz)

up to a factor. Q.E.D.

The additive property of the generator of the
unitary transformation is brought out by the remark
that if U = ¢'*, U(0,) = &%, U(0,) = €**, and
U= U©)U(,), then X = X, 4+ X, on their
common domain of definition. The faet that U
commutes with U, and U, means roughly that
local measurements of X are compatible with a
given total value of X.

Of particular interest'' is the question of whether
we can define local energy-momentum and angular
momentum operators. For the free field ¢° there
exists a spin-2 field in the Borchers class'® of ¢°
given by

T = 2:¢'¢":~g,(6'¢" — u'e’,
where ¢* = 9¢°(z)/0xz", with the properties

T™ () = T""x), 5
8,I"(z) = 0, (6)
f d*zT*(z) = P~ (N

These properties indicate that 7*(z) can be inter-
preted as the energy-momentum tensor density.
The properties of T*'(z), (5), (6), (7), together with
being in the Borchers class of ¢°, determine it up
to a c-number spin-2 tensor field. Unfortunately,
the “momentum inside a region ©” ecannot be
defined as

PXe) = fo () d'z, @®)

even for the free field, since (8), as it stands, takes
the vacuum to a nonnormalizable state. The field
T*"(z) is integrable over © only if it is multiplied
by a test function which vanishes at the boundary
of O.

The question as to whether the energy operator
is strictly intensive in our sense is a trivial one,
since we have defined the ‘“local value” of the time-

1t J, Schwinger, Phys. Rev. 130, 402, 406, 800(1963).
12 H. J. Borchers, Nuovo Cimento 15, 784 (1960); Ref, 6,
Chap. 4 or Sect. 6.
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translation operator so far only for algebras in-
variant under time translation; a theorem of
Borchers'® says that such algebras consist of all
bounded operators. The next theorem shows that
it is not possible to define a space-translation op-
erator (in regions invariant under space translation).
The uniqueness of the vacuum plays an important
part in the proof.

Theorem 2. Let © be such that U(a)oU(a)™ = ©
for all spacelike translations ¢ = Ab, where b is
fixed and — < A < . Then there does not
exist V{a) € @(0) with

V(@)SV(a)™ = U(@)SU(a)™" 9
for all S € @(0), unless © is empty.
Proof: Suppose 0’ contains an open set and V(a)
exists satisfying (9). Then
S =V 'V(@Vb) Vi) ' SV(e) V() 'V(a) V(b)

for all 8 € @(0), ie., V(B)"'V(@)V(h)V(a)™" is in
@’ as well as @, and so, by Axiom 2, there exists
A(a, b) such that

V®) = Ma, DV@ VD V(@™
= Ma, YU@QVDU@™ by (9,
which leads to
V()% = Ma, DU(@)(V(b)¥o).
Now, W', is the only normalizable ray which changes
only by a phase under U(a), so V)¥, = a¥,.
Thus V(b) — a1 € @(0) and annihilates the vacuum,

impossible if © contains an open set.’* This con-
tradiction proves the result.

Corollary (first proved in Ref. 2). If O is invariant
under a spacelike translation group, then @(0) is
not of Type 1.

Note added in proof: This result is proved by the
same method by R. V. Kadison, J. Math. Phys. 4,
1511 (1963).

Proof: Suppose Ula) @(0)U(a)™" =
the transformation

S — U@)SU(a)™" = &(8)

defines an automorphism for the * algebra @, ie.,
a1 :1 map of @ onto G preserving the algebraic
structure. Therefore if @ is of Type I, & is an inner
automorphism, i.e., ®(S) = V(a)SV(a)™' for some
¥V € @ and all § € @."® This contradicts Theorem 2.

@(0). Then

13 H. J. Borchers, Nuovo Cimento 19, 787 (1961).

14 H, Reeb and S. Schlieder, Nuovo Cimento 22, 1051
(1961); Ref. 6, Chap. 4.

15 Ref. 3, p. 256, Corollary.
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1. INTENSIVE OBSERVABLES IN
LOCAL FIELD THEORY

We have seen that, in the theory of the free
field, the energy—momentum tensor 7*’(z) does not
satisfy the definition we gave of “‘strictly intensive”.
It is easy to see that other “densities”’ defined in
the usual way for the free field, such as isospin
and charge density, are not operators when inte-
grated over a finite region, unless they are smoothed
with a test function. Since these local fields (the
densities) are undoubtedly very useful objects, there
is an indication that the definition given was too
restrictive. We therefore weaken it to

Definition: A conserved quantity X in a field
theory of a field is said to be intensive if there exists
a field X(z) in the Borchers class of ¢ such that,
for any © C R?,

(XM, e@)] = [X, o(@)], =E&o,

where f is a test funetion = 1 in ©. The definition
implies that X(x) can be restricted to a spacelike
surface. This could be avoided by smoothing both
sides in the time, so as to read

U}wwmwmawmm]

= ([ o at)x, oo,

The definition means that, to measure an intensive
quantity in © we need a region 0" slightly larger
all around, but which can be made arbitrarily small.
With this definition, 7*"(z) for the free field is an
intensive field.

For the free field, 7" (z) is a reducible field,
since it commutes with the projections onto even-
and odd-particle states. It is conceivable that field
theories exist in which 7*(z) is irreducible. We
will call such theories purely graviiational. If a
collection of intensive fields such as T*'(z), 7*(z),
etc. form an irreducible set, we will call the theory
an ¢ntensive field theory: it is a theory purely involving
the given conserved quantities. In a sense we may
regard every field as a local density. The problem is,
to find under what conditions a field is the local
value of the intensive operator, and, if so, how do
we physically interpret the conserved operator?

Unlike strictly intensive operators, we do not
expect intensive fields to commute with the operator
they represent. There is always some overlap out-
side the region © under discussion. Since the envelop-
ing region O, can be made as small as we like, we
should expect T°*(z) and P* to commute “in some
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limiting sense”. To see how this might be made
rigorous we return to the bounded observables @(0).

IV. GERMS OF LOCAL OBSERVABLES

Let © C R® be a bounded open set, and U, V
two unitary operators & ®(3¢). The operators U, V
define symmetries, and induce transformations
USU™, VSV ' onany S € @(0). We say two unitary
operators are physically equivalent in O if

USU™* = v8v™
and forall 8§ € a(9).
U'SU = V'8V,

We then write U = V in 0. Obviously = is an equi-
valence relation, and U™'V € @’(0), UV € @'(0)
if and only if U = V in ©. For Hermitian operators
the commutator is the physically significant thing.
We say two Hermitian operators X, X, are phys-
ically equivalent in O if

(X, 8] = [X;, 8] forall S & c(@);

clearly this is equivalent to (X, — X,) € @'(0)
and we write X, = X, in 0. Obviously = is an
equivalence relation. If X,, X, are unbounded
self~adjoint operators, we say X, = X, in 0 if
(X, — X)4@’(0). This requires that the domain
of definition of X; — X, is mapped into itself
by @'(9). We are now in a position to give a suitable

Definttion: A unitary operator U & ®(3C) is said
to be ¢niensive if to any open set © invariant under
U, and to every open set 9, containing the closure
8 of 0, there exists a unitary operator U(0, 0,) €
@(0,) such that U = U(0, 0,) on 0. A similar
definition can be given for an intensive Hermitian
operator, but in this case © may be any open set
whatever. It is clear that if U = V on 0 then
U = V on any open subset of 0. The set of pairs
{0, U(®, 0} for all 9, D & we will denote by
U(0), and call it the restriction of U to 0.

More generally, we can define a section over ©
without reference to an outside operator U as
follows.

To every open set © and ©, D 8 is given a unitary
operator U(9, 8,) € @(0,). The pairs (©,, U(0, 0,))
have the following property P(0): given 0, and 0,
both containing &, there is to exist an 9; such that

0; C O MO, 0; D 6§,
and

U@,0,) = U@©,0,) on O,
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The sets of pairs {(0,, U(0, 0,))} is said to be
equivalent to the set of pairs {(0;, U’(9, ©1))},
if to any 0, 0] there exists an open set 0;in ©, M O}
such that '

U@, o) = U0, 0)

and ©; D 0.
The next theorem proves that this is an equi-
valence relation; we write

{©, U, 0))} = {1, U'(0, 0D)}.

Before proving the theorem let us define these
objects more explicitly. Let ©(8) be the collection
of all open sets in R?® containing &, and Q(z) the
set of all open sets containing z. Then the pairs
(0, U(0, 0,)) with the property P define a mapping

in O,

Ue

Q = B0
as 0, varies over £(9). Let u(Q) be set of all mappings
from Q to ®(3C). Then the equivalence relation = is
defined between elements of u(), which therefore
fall into equivalence classes.

Theorem 3. The relation = between elements

of u(Q) is an equivalence relation.

Proof: Since U & u() is a collection of pairs
(0, U(0, ©,)) with the property P, the relation
is by definition reflexive. It is also obviously
symmetrie, since = is a symmetric relation in
®(3¢). To prove transitivity, suppose

{(Oly U(@, 01))} = {(O;y UV(e, O:))}v
and

{©1, U0, 00} = {1, U, 6"}
Then by definition for given 0,, ©;, 0}" there exist
open sets O; and ©; such that

0 Co,Ne;, 0:Co Mo,
and

0; 08, 008,
U(o, 0,) = U’ (9, 6]) on 8,
U@©0) =U"@©0") on 6.
Since the relation = is transitive we have
Up,0) =U"0,0" on 0,N 6,
and 0; M 0; D 8. Therefore by definition
{@©, U, o))} = {(6", U0, 0},
and the relation = is an equivalence relation.

Definition: An equivalence class in u(Q) with
respect to the relation = is called a unitary section
over © written U(0). In the same way we define
a Hermitian section over ©, X(0), by replacing
U, 0,) € a(e,) by X(o, 0,) € @(0,), where
X is Hermitian; with no extra trouble we can
include the case where X is unbounded.
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The usual axioms do not say that every Hermitian
operator is intensive; we note that a unitary op-
erator such as U(a, A) which moves the region ©
around cannot be intensive in our sense, except
in regions invariant under the subgroup of L(R)
generated by the element (@, A). We can, however,
consider infinitesimal Lorentz transformations. This
means, that given 0 and 9, D & we consider those
U(a, A) sufficiently close to the identity, such that
U(a, A) & C 0,, We might add the axiom that
certain “important’” operators are intensive. This
idea works for the free field. Another point is not
covered by the usual axioms. There is no proof
that every section over © is the restriction to ©
of some global operator. We can either postulate
that it is true (thus restricting the class of theories
under discussion), or consider only those sections
which are restrictions of global intensive observables.

If U is an intensive unitary operator in ®(JC),
we can define a thing called the germ of U at =z,
written U(z), in the same way as we defined U(9)
for an open set; choose x & R* and U, a section
over R®, and consider that set U(z) of all sections
of U over open sets containing z. Given any two
such sections, their restrictions to a small enough
neighborhood of z are = equivalent. If we regard
U(z) as the collection, as © varies over Q{z), of all the
pairs {(0,, U0, 0))} & u(Q) in the equivalence
class U(0), we see that U(z) is defined as an equiv-
alence class of mappings with the property P(x)
from Q(z) into ®(3C), two mappings U, V being
equivalent if for any two sets 0,, 8. & Q(z) there
exists an open set ©; € Q(x) such that U(9,) = V(0,)
on 0. This result brings the definition of germ into
line with that of section. The germs U(z) are
called unitary germs and the germs X(z) (defined
similarly for Hermitian operators) are called
Hermitian germs.

We can define an operation of multiplication
among unitary sections, and among unitary germs;
we can define addition among Hermitian sections
and germs.

Let U(v), V(0) be two unitary sections over
0. Let us define UV(0) to be the section defined
by the equivalence class defined by the follow-
ing element of u(2(8)). To any open set 9; DO §,
choose the operator U(0,)V(0,), where U(0,) is
chosen from among equivalent operators U(e, ©,)
in the section U(©), and the same for V(0,). We
must prove two things: first, that this defines
a section and secondly, that the section is in-
dependent of the representatives U(0,), V(0,)
chosen. To prove the first, suppose we have chosen
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to the sets ©°, 0", the representatives U(0"), U(0"),
and V(0°), V(0), respectively. We are given
U@ )SU@)™ = U@O™)SU@E™)™ if § € a(o,),
say, and V(©)SV(0")™' = V(©)SV(@O™")™" if
S &€ @(0,), say. Since (0, U(0, 61)), (64, V(0, 0y))
have the property P{@), we may find U(0; N 8,),
V(9: M 0,) such that

U@©; N o)SUTE; M 8y
= UE)SU'©") for S & a0y,
Ve, N0 )8V e, Moy
= V(©O)SV©) for
Let 8 € @¢(0; M 8,). Then we have
UE)(V©E)SVE) ™ HUE)™
= JEWV©: NSV, N e) U .

8 € Q(0s).

Since

V(©: N 0)SVHo: N o) € o),

the above line is

U™} V(e: N 08V e, N oHYUE™™
UE)(VE)SV i (e)UE™)™
U@E™)VE")SV O UE™™,

since § € @(0,). This proves that UV(0) is a
section over ©. To prove the second part, suppose
that instead of U(0"), V(9") we had chosen the
representatives U’(0°), ¥V’(0") in the same equiv-
alence class. Thus we are given 0, € Q(0), 0, € Q(F)
such that

Ue)SU@©)™ = U'©)SU'(©O"), S € a@©),
VE)SV(E)™ = VE)SV'(©)", 8Ea@).
We may also find U@, M 8,), V(©, M 0,) such that

U©, Ne)SU o, N ey = U'E)SU{E")™

= U@E)SU©)™" for S E QO:);
Ve, N8V e, Ne,) = VE)SV(Ee)!

= VO)SVEO)™ for S & @0,

where 03, 0, € QUE) and 0, N 0, D 8, D O
Then choose 8 & @(9; M 9,). We have

U@E)VE)SVHe)U™(©")
= UEV(e: N 0)8V (0, N 0)]UL ()

) = U@)Ve. N )8V M 0)]U"(O) 7,
smcee

Ve, M eS8V o, N o) € G©y)
= U@ [V ©)SV'®©)1U'©O"), SEa®:No,).

I

I

I

I
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Similarly,
V) U @©)SU©)V(©)
= V'O)'U©O")'SU©)V'(©").

This proves that U(©)V(©") = U'(0")V'(0") on
9s M 0,, i.e., they belong to the same equivalence
class, showing that the section defined by UV (©)
is unique. In a similar way we can define the product
U(z)V(x) of germs.

To any section U(9) we can define the inverse
section U(0)™" as follows: Given 0" € Q(0), choose
the representative of U™'(0) to be U(0")7}, i.e., the
inverse of some representative. We have to prove
that this is a section, and that it is independent
of the representatives. To prove the first, suppose
©° and O°° are given. We have to prove that U(0")'=
U(©’")”! on some subset ©; € Q(8) of © N 0.
This follows immediately from the definition of
U(@’) = U(0"). Secondly, we must show that it
defines a unique section. Let U’(©") be chosen instead
of U(0"). Since U’(0") leads to a section equivalent
to U(9"), it is clear that U’(0°)™" leads to an equi-
valent section to U(0°)”'. This proves that the
inverse section is unique. We can also check the
equation U(©)U'(0) = 1(0). Note that the unit
operator is an intensive unitary operator. The
section over O is defined as the map which takes
an open set © to any operator in @(Q° — §;), say
where 0, is any set in 2(8). This operator commutes
with G(0;), i.e., is equivalent to the identity on O,.
To prove the equation UU™' = 1(0), it is sufficient
to pick any representatives, since as we have shown,
multiplication is unique. Picking inverses of each
other immediately gives the result. We have there-
fore proved

Theorem 4. The unitary sections over © form a
multiplicative group, F(0).

We note that multiplication by a phase does not
alter a unitary section, since ¢ *U(0") = U(0")
on O°. This is in line with Theorem 1, where the
strictly intensive unitary operators are unique except
for a factor.

If 9, and 8, are disjoint sets we can define quite
a different type of multiplication of sections:
U(©,) X U(®,). This is a section over 0, \J 0,
whose representatives are the products of the rep-
resentatives of U(09,) and U(0.). This defines a
section, since a sufficiently small neighborhood of
0, U 0, can always be split into open sets 0] D 8,
and 0 D 8,, with o] N\ ©; = ¢. Let us choose
representatives U,(0}), U.(0;), and to another pair
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07", 0;° the representatives U,(0;"), U,(0;’); we have
to show that

U,00)U,(03) = U,(01") Us(0;)
in a neighborhood of ©, \U ©,. There exist open sets
0, C 0" Moy, 0, C 0N
such that
008, 0,08,
and
U,0) = U,(0") on 0
U, ) = U,(0;") on o,.
Now for § € @(0;), T € @(0,) we have
U.(©")U,0)SU; () U ©") = U (07)8U,©")™*
= U,(0")8U'(©™)
= Uy(©™")U,©")SU; @) U™,
and similarly,
U,©) U (0T U @)U
= U, (0")U,(©™)TU; () U ©™).

Then, by taking weak limits of polynomials in
S € @(0s), T € @(0,), as in the proof of Theorem 1,
for any

S € (a@) Y a@y)” = ae: \J 0y,
we have
U,(0)U:(0)8U;" (") U (©")
= U0 U,(©")SU; @)U (©™),

which proves U(®,) X U(0,) is a section over
0,V 0.

If we had chosen U!(0}), Ui(e:) instead of
U.(0}), U,y(0;), similar arguments show that

UienUs(0:) = U,(0)Ux(03)

on some neighborhood of ©, \U ©,. This proves
that the X product is unique. Now, we may write
U@, Y 0y) for U(0,) X U(0,) if 8, and 8, are
disjoint, since the restrictions of U(®,) X U(0,)
to O; are clearly U(0;). Therefore we have the
generalization of Theorem 1 to sections:

Theorem 6. If UR®) is a section over R® then
UR®) commutes with its local values, and if &,
and O, are disjoint, then U(0,\J0,)=U(0,) X U(0.,).

Proof: It remains to prove that UR®) commutes
with its local values, or, rather, to define U(8,)V(0;)
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when 0, # 0, and they are not disjoint. We define
U©)V(0:) to be U©, N 0)V(0, N 0), ie,
the produet of the restrictions, and it is a section
over 0, /N O, Since the restriction of UR®) to
0 is just U(0), it is trivial that UR?) commutes
with U(0). Q.E.D.

We note that if ©, and 0, are disjoint but have
common boundaries, then neither X nor ordinary
multiplication can be defined for general sections.
However, for sections which are restrictions of
global operators we may simply define

U(Ol) X U(Oz) = U(O]_ U @2) ]f 01 m Oz = ¢,

bringing Theorem 5 (by definition!) into line with
Theorem 1. The problem of dealing with the bound-
ary of 0 in defining X will turn up again later.

We can define multiplication on the set of Herm-
itian sections as follows: If X (0") is a representative
of X, then AX(0") is a representative of AX. We
can also define addition of Hermitian sections over
0. Choose, for a given set ©° D 0, representatives
X(©°), Y(©') and define the representative of
X(©) + Y(0) to be X(0") + Y(0"). To prove this
is a section, we have, for any ©°, 0", a set 0, with
Oa D © and

[X(©"), 8] = [X(©™), 8] for 8 & GO,
and a set O, with

[Y(©%), 8] = [Y(©™), 8] for S& a@©).
Choose S € @(0; M 0,). Then
X©) + Y@©), 8] = [X(©), 8] + [Y(©), 8]

= [X(0™), 8] + [Y(0™), 8]

= [X©") + Y(©"), 8] for 8 & GO; N 0O,).

This proves that the addition of two sections is a
section. To show it is unique, suppose that instead
of these we had chosen other representatives
X'(0"), Y’'(9°). Then a simple argument shows that
X(©") + Y(©) = X'(0") + Y’(9°) on some 0; D &.
Thus we have proved

Theorem 6. The Hermitian sections form an
Abelian group §(0). We note that the zero of the
group is the section containing multiples of the
identity.

With no extra trouble we can define the addition
of two Hermitian germs at the same point in the
same way, and the addition of two Hermitian
sections over different intersecting sets as the sum
of their restrictions. If 8, N\ §; = ¢ we can also
define the -+ sum of X(0,), Y(0,;) as a section
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over © = 0, \J 0,, whose representatives are just
sums, i.e.,

X + N)E) = X@©E) + Y©).

It is obvious that this is a well defined section,
provided X and Y are bounded, for the argument
analogous to that before Theorem 5 goes through.
If X(0,)Y(0,) are the restrictions to ©,, 0, of a
global section X(R?), we may define X(0,) + X(0,)
as X(0, U 09,) if 9, M\ @, = ¢ but 0, and O, have
a boundary in common.

We cannot in general define multiplication of
Hermitian sections (or addition of unitary sections)
because the production of two Hermitian operators
is not general Hermitian, and we have no good
definition of “physical equivalence” for arbitrary
operators. Thus our formalism does not allow us
to define things like (X(z))?, and so we cannot
write equations of motion, etc. We can define the
X product of two Hermitian sections X (0,), Y (0,)
if all the representatives of one commute with all
those of the other (in the usual sense) in some
neighborhood of © = 9, X ©, C R° for then all
the products are Hermitian, It is obvious that this
defines a unique section over ©. In particular we
can define the product of two germs X(z), Y(y)
at different points of R®. The analogy with field
theory is very strong.

There are two further operations which are
possible on the sections U(0) and X(0). We can
define a derivation for each X(0) as follows. Let
X(9) be a Hermitian section. Then, to every
Hermitian section Y (0) we define the derivative

Y
3(6/9X)

We now prove that this s Hermitian section. The
expression means, of course, that the representative
of the deriviative is

i[X@©7), Y(©)] if o D8.

Suppose now ©°, 9" are given. Then we know that
there exist sets 0,, 0, such that

[X(©?), 8] = [X(0*), 8],

Y(0) = iX(©), Y(©)] =

S.€ a©y)
and
[Y(©), 8] = [Y(©), 8], S.€ a@©).

There also exist sections X(0, N 0,), Y (6, N 0,)
with the property that, for some sets 0;, 0, D §,

(X, Moy, 8] = [X(©"), 8] = [X(©™), 8],
S E a(ea)v



INTENSIVE OBSERVABLES IN QUANTUM THEORY

[Y(e: N0y}, 8] = [Y(07), 8] = [Y(©"), 8],
S € aO,).
Let 8 € @{0; M 8,). Then by the Jacobi identity,
[X@"), Y(©)1, S] = [[X@©"), 8], ¥Y(©")]
+ (I8, Y(©)], X(©"]
= {[X(0; N 6a), 8], Y(0')]
+ [[8, Y(o. N 8,)], X(©Y)]
= [[X(&: Moy, 8], Y(0)]
+ [I8, Y(o: N 81)], X(0™)],
since
[X(0, N 0y), 8] € a0,
and
[Y(0, N 0Oy, 8] € a®,).
Proceeding, we see that
[[X@©), Y71, 8]
= [[X(©™), 8], Y(©™)] + [[S, Y(e*)], X(0™)]
= [[X(0™), Y(©™)], 8] for S & @O, MN0Oy).

This proves that [X(0), Y(9)] is a Hermitian
section. To prove it is unique, let representatives
X (0", Y(©") and X'(0"), Y'(©") be given. We know
that there are sets 0,, 9, such that

(X@©), 8] = X'©), 8, S&al,
[Y©), 8] = [Y'(©), 8] if 8¢& a@),
0, D8, 0, D 8.

There also exist X (0, N 0,), Y (0, M 0,) such that,
for some sets 0;, 9, O 8,

[X(©), 81 = [X'(07, 8] = [X(6. N 04), 8],

8§ € @),
[Y(©), 8] = [Y'(0"), 8] = [Y(&: M 0©y), 8],
S € a@©).

We now proceed as above, with X'(0°) replacing
X(0”), and Y’(0") replacing Y (0""), to prove

[[X(©), Yo7, 8] = [[X"(©), Y'(©7)], 8],

in some neighborhood of 8, proving that 0Y /8(a/3X)
is a unique section,

The other elementary operation on the group
of X(0) ig the unitary transformation X(0) —
U@©)X(©)U(0)™" for a fixed U(0), as X(0) varies
over G(0). To prove it defines a section, suppose
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©', 0 O & are given. Combining together all the
properties, there exists 9, O 8 such that

[X(@©), 8] = [X(©™), 81,
U©)SUE)™ = UE™")SUE™)™,
U©)"'8U@©) = UE™'8U@©™),

Then there exist X(0,) and U(0,) such that, for
some set @, C 0,, 0, D §,

[X@©), 81 = [X(©™), 8] = [X(04), 8},
U@E)SU®)™ = UE)SUE)™ = UE™SUE™™,
U ©0)8U@©) = UE)SUE") = U (©™)8UE™),

for all S &€ @(0,). Further, there exists an op-
erator U(0,), say, where 0, D 03 DO §, such that
U(0,)7'SU(®,) = U©")™'SU(©") = U™(e"")SU(0™)
for S € @(0;). Let § € @(0,). then

[UE)XE)UE)™, 8]
= U@©")[X(©), UE)8UEIUE)™

U@©")[X(©"), UlE)'SU@)IUE®)™
U@©)[X(©), U@E)'SUE)IUE)™
U@E™)[X©), U@©,) " 8UME)IUE™)™
= U©™)[X(©™), U@©)'SU@E)IUE)™
U@E™)X(©™), UE™)8UEMUE™™
[UEX@E")UE™™, 8] for 8 & QO,).
This proves that

UEYX©E)UE")™ = UE"XE)UE™™ (10)

on 0 i.e., we have defined a section. To prove
it is unique, suppose U’(0"), X'(0") were chosen
instead of U(®"), X(0°). Then following exactly
the above proof of (10}, just replacing everywhere
U©™) by U'(e") and X(0*") by X'(0"), we prove
that there exists a set 9; D O such that

UE)X©EHU©)™ = U'O)X'©)UO)™

on O, proving that the definition is unique, Therefore
we have

for S8 &€ @(y).

It

]

]

I

]

Theorem 7. The group g(0) has an endomorphism
Y({©) — aY/8(8/8X) = i[X(©), Y(©}],

and has operators in (0), X (0) — U(©)X(0)U(©)™".

There are many as yet hidden and unused prop-
erties of the theory; for example, the existence of
U{a, A) and its effect on local observables; the
mass speetrum of the theory; that @(©) are factors
and bhave separating and cyclic vectors, etc. We
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have lost touch with the original Hilbert space,
and some of our sections are not operators. A
section X will be an operator X if X(0) is strictly
intensive, i.e., if we can extend the map u(Q) — ®(5¢)
to all sets in 2(0), i.e., to the set O itself. Conversely,
if X is strictly intensive, we pick all representatives
to be X(0) and get a section X(0). Thus

Theorem 8. Let @,(0) be the set of all Hermitian
operators (modulo scalars), and @.(0) the set of
all unitary operations (modulo phases) in G(0).
We can regard the strictly intensive elements of
@.(0), @.(0) as subsets of g(0), F(0) given by the
condition that U(0) & @,(0) if and only if the map
Q@) 5 ®(3¢) can be extended to Q(0) 5 ®&(3C),
and similarly for @,(0). The formulation of ‘“inten-
sive observables” presented here shows that a
meaning can be given to the commutation relations
suggested by Gell-Mann and Schwinger, and used
in calculations in Ref. 16.

V. SHEAFS OF INTENSIVE OBSERVABLES

We have defined sections over bounded sets ©;
these form the groups F(0), G(0) of unitary and
Hermitian sections. If 0, C © we can define the
restriction map po, from F(0) to F(0,) as follows:
we map U(0) onto U,(0,) if their representatives
coincide in all sufficiently small neighborhoods of
O,. [This is possible only if U(0) is intensive, not
for general operators in @(0)]. This map is obviously
well defined since any two representatives of U,(9,)
are equivalent in some neighborhood of &,. The
mapping defines a group homomorphism, because
if U(0), V(o) separately coincide with U,(0,),
V.(0,), then the product U(0)V(0) coincides with
U,(0,)V.(0,). It is also obvious that if 9, C 0, C ¢,
then

poipo, = po,.
Therefore the sets F(0) satisfy the axioms making
them form a presheaf of groups. Similarly the G(0)
form a presheaf of Abelian groups. The elements
of F(0), g(0) are called the sections of F, ¢ over 0.

If a presheaf is to be a sheaf, two further axioms
must hold. First, suppose 0; is a collection of open
sets with union 0, and suppose U(0), V(0©) are two
sections whose restrictions to each ©; are equal.
We have to prove U = V. We can prove this if

18 A, P. Balachandran and H. Pietschmann, Acta. Phys.
Austraica 16, 362 (1963).
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0 is bounded. We are given U(0;,) = V(0,), which
means, for all @ D 8 there exists ©;" D 0, such that

U©;, 0)8U©:, 0~ = V(0:, 0)8V(©;, 097",
for S &€ @@©).

But U(0,) is the restriction of U(®) which means
that to any 0" D & and representatives U(0;, 0}),
U(o, ©°) there exists an 0 D 8 on which

U(,, 07) = U, 0").

Similarly there exists an ©{” O 0; on which, for a
given 0 D §,

V., 0) = Vo, 0).

Sinece O is finite we may assume that there are a
finite number of ©,. Choosing ©!” DO 0; small
enough we have

U, 0)8U@, )™ = V(©, 6)8V(, 6)7,
for S € a@s").
For any T € a(U,0{"), let S — T weakly where

S € U.(G(o)).
Therefore

V(©,0) = U@©,0) on U, U=V.

The second axiom is: if O; is a (finite) family of
open sets with union ©, and for each 7 we are given
a section U(09;) of F over O, in such a way that for
all 4, j the restrictions of U(0;), U(9;) to ©; N 0;
are equal, then there exists a section U(0®) over 0
whose restriction to each 0, is just U(0,).

It is obvious that if we consider only those U(0;)
which are restrictions of some U over 0, then there
is nothing to prove. But the axiom does raise the
question, is it possible for F(9;) to be sheaves without
there being an §(9)? If §; and &; are disjoint sets,
we can form F(0, U 0;) as the product F(0;) X F(0;)
[or the sum G(©,;) -+ G(0;) for G]. The only question
to be settled is, what is the effect of the boundary
if 9, M ©; = ¢ but §; N §; = ¢. This surface
effect can hardly have physical importance, unless
there are superselection rules. Such questions can
be investigated by means of the technique of
“exact sequences’’ common in algebraic topology.

i.e.,
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The Coulomb Green’s function for the nonrelativistic Schrédinger equation is obtained in closed
form starting from the partial-wave expansion and using an integral representation for a product of
two Whittaker functions with different arguments. The Neumann’s series for J,(kz) is required in
evaluating the sum on states. Using the same methods, the Coulomb Green’s functions for the Klein—
Gordon and iterated Dirac equations are obtained in closed form in the “Furry approximation,”
a?/(J 4+ 18)2 K 1, a = Ze*/4nhc. The Klein-Gordon Green’s function in this approximation is shown
to be at the same time the exact Green'’s function for the Klein-Gordon equation without the poten-~
tial squared term. An alternate and very simple derivation of the approximate Green’s function for
the iterated Dirac equation is given using perturbation theory. From this Green’s function, an
approximate Coulomb Green’s function in closed form for the Dirac equation itself is constructed.
Certain known results for Coulomb wavefunctions with modified plane-wave behavior at large dis-
tances are rederived using the foregoing methods and results.

INTRODUCTION

N the following we study the Green’s function

for a particle moving in a Coulomb field and
obeying either the nonrelativistic Schrédinger equa-
tion, the Klein—Gordon equation, or the Dirac
equation. The “physical’”’ Green’s function as de-
fined here is the Fourier transform in time of the
propagator of quantum field theory, and it is from
this fact that the Green’s function derives much
of its physical interest. Of course, the Coulomb
Green’s function is also of interest from the point
of view of ‘“one-particle” (relativistic or non-
relativistic) quantum mechanics.

There are not many previous attempts to obtain
the Coulomb Green’s function in closed form.
Meixner' in 1933 obtained the nonrelativistic
Coulomb Green’s function for a one-dimensional
system, but he obtained the three-dimensional
Green’s function in closed form only in the two
special cases 7, — © and r, = 0. In 1937% he outlined
a perturbation treatment of the Dirac Coulomb
Green’s function which connected the Dirac Coulomb
Green’s function with the Coulomb Green’s function
of the Klein—Gordon equation without the potential
squared term (which however was known only in
the special case that r, = 0). More recently, Martin
and Glauber’ have obtained the exact expression
for the Dirac Coulomb Green’s function in the

* This study was supported by the Air Force Office of
Scientific Research Grant AF-AFOSR-62-452.

1 A more complete account of this work is given in Levere
Hostler, “Coulomb Green’s Functions,”” Ph.D. thesis, Stan-
ford University, 1963.

1 Now at Department of Physics, Yale University.

1J. Meixner, Math. Z. 36, 677 (1933).

2 J. Meixner, Ann. Physik 29, 97 (1937).

(19;8% C. Martin and R. J. Glauber, Phys. Rev. 109, 1307

special case that r, = 0. Mapleton' and Mano®
have shown how to go from the partial-wave expan-
sion to the eigenfunction expansion of the non-
relativistic Coulomb Green’s function, and Wich-
mann and Woo® have given a double integral
representation for the nonrelativistic Coulomb
Green’s funection.

The results to be presented here will complete
the work of Meixner. We obtain the exact three-
dimensional nonrelativistic Coulomb Green’s func-
tion in closed form, and also the exact Green’s
function for the Klein—Gordon equation without
the potential squared term. Thus we are able to
carry out Meixner’s perturbation approach to the
Dirac Coulomb Green’s function. However, we are
still unable to give the exact expression in closed
form for either the Klein—Gordon or the Dirae
Coulomb Green’s function.

Our plan of attack is to obtain for the Green’s
function results paralleling known results for the
Coulomb wavefunctions with modified plane-wave
behavior at large distances due to Gordon,” Furry,®
and Sommerfeld and Maue® (see also Bethe and
Maximon'®).

Paralleling these results for the wavefunection,
we obtain in Sec. I an expression in closed form
[Eq. (1.18)] for the exact nonrelativistic Coulomb

Green’s function, working from the partial-wave

¢ R. A, Mapleton, J. Math, Phys. 2, 478 (1961).

s K. Mano, J. Math. Phys. 4, 522 (1963).

¢ E. H, Wichmann and C.-H. Woo, J. Math. Phys. 2,
178 (1961).

7 W. Gordon, Z. Physik 48, 180 (1928).

8 W. H. Furry, Phys, Rev. 46, 391 (1934).
(19”3A. Sommerfeld and A, W. Maue, Ann. Physik 22, 629

19150 3 . A, Bethe and L. C. Maximon, Phys. Rev. 93, 768
4).
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expansion of the Green’s function. The partial-wave
expansion is summed using an integral representation
[Eq. (1.9)] for a product of two Whittaker functions
with different arguments. The Neumann’s series
for the Bessel function I,(kz) [Eq. (1.11)] is used
to perform the sum on states.

In Sec. II we obtain the exact Green’s function
for the Klein—Gordon equation without the potential
squared term. This Green’s function is then shown
to be at the same time the Green’s function in the
“Furry approximation,”a’/(I+3%)*«<1, a=Z¢’/4rhe,
for the Klein-Gordon equation itself. The derivation
of the “eigenfunction” expansion for the Klein—
Gordon Green’s function poses a special problem
due to the fact that we are now dealing with a
wave equation which is second order in the time
derivative rather than only first order, as in the
nonrelativistic case.

In Sec. III we are really interested in the Dirac
Coulomb Green’s function. However, the Dirac
Green’s function is first expressed in terms of the
Green’s function of the iterated Dirac equation
[see Eqs. (3.5a), (3.5b)] and the remainder of Sec.
III concerns the Green’s function of the iterated
Dirac equation. An approximate expression in closed
form [Eq. (3.16)] for this Green’s function is derived
using perturbation theory (along the lines of
Meixner’). Here the approximate Klein—-Gordon
Green’s function developed in Sec. II is required.
We show that the approximate Green’s function
obtained by perturbation theory is at the same time
the Green’s function of the iterated Dirac equation
in the Furry approximation, a’/(/ + 3)® « 1.
In order to give the proof of this, we derive the
partial-wave expansion of the exact Green’s function
of the iterated Dirac equation. It is then shown
how the Green’s function in the Furry approximation
can be obtained directly from this partial-wave
expansion, by using the methods developed in
Sec. I. At the end of Sec. III we obtain certain
properties of the exact Green’s function of the
iterated Dirac equation, including a formula
[Eq. (3.49)] exhibiting the v dependence of the
Green’s function.

In Sec. IV we study the Coulomb wavefunctions
with modified plane-wave behavior at large distances
using the preceding methods and results. Here a
result due to Johnson and Deck' is rederived using
the standpoint of the Green’s function to advantage,
and a derivation of the Furry wavefunction is given
in which the only sum formula needed is the Neu-

1 W. R. Johnson and R. T. Deck, J. Math. Phys. 3, 319
(1962).
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mann’s series (above). Also, the Furry or Sommer-
feld-Maue wavefunction is obtained from our
approximate Green’s function by looking at the
asymptotic behavior as r, — «,

I. NORRELATIVISTIC COULOMB GREEN’S FUNCTION

The Green’s function G(r;, r;, w) will be defined
as in Meixner' as the solution of the differential
equation

(Vi + @)/ra + K1G(s, 11, ) = 8(r
v = (ka,)™"; @, = 4nh’/mZe’;
k= @me/B)}, Im (k) > 0,

which satisfies the following boundary conditions
at the origin and at infinity:

_rl)y

(1.1)

G, 1, 0) >0
7‘31'2°V2G(l'2, 1'1, w) - O

1.6, 1, w) — 0

} as r;—0,
1.2)

} for r; — .
1+ V,G(t,, 1;, 0) = 0

Here %w is a complex number not in the eigenvalue
spectrum, discrete and continuous, of the Hamil-
tonian H of the system. The Green’s function as
defined by (1.1) and (1.2) is unique and symmetric,
G(r,, 1, w) = G(ry, I, w)." The Green’s function
is an analytic function of %w on the complex Aw
plane cut along the positive real axis (the continuous
spectrum, 0 < kw < 4 «), except for simple poles
at the distinet bound-state energy eigenvalues of
the system. The retarded (advanced) “physical”
Green’s function, defined for real fw, is obtained
from G(r,, r;, w) by taking the limit as Aw approaches
the real axis from above (below). For fiw > 0,
the physical Green’s functions so obtained have
an oscillatory behavior as r, — o at large distances
the retarded Green’s function consists of only
outgoing spherical waves and the advanced Green’s
function consists of only incoming spherical waves.
For hw < 0, the retarded and advanced Green’s
functions coincide and both agree with the “general”
Green’s function as defined by (1.1) and (1.2).
These %w values are ‘“nonpropagating” in the sense
that the Green’s functions decay exponentially as
Py — ©,

The solution of (1.1) and (1.2) can be written
down in the form of an eigenfunction expansion:

Prmll; 1)b Tk ;1)

h? © 1] ©
G(r21r1,w) = _% ; m;t f; dk (h2k2/2m) _ hw
2 © ©
Pnim(T2)PRim(TL)
- Quimlloluinly) (g
2m n=1 =0 m==—1] Enl - hlﬂ ( 3)
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The eigenfunctions here are the simultaneous eigen-
functions of the Hamiltonian and of L-L and L,
where L = the orbital angular momentum operator
of the particle. In the first term of (1.3) we have a
summation and integration over the continuous
spectrum of H; in the second a summation over
the discrete spectrum. Inserting the explicit expres-
sions for the wavefunctions and doing the integration
over the continuous spectrum,’® we obtain

G, 1, 0) = (87"7:,‘37'1""2)_1 Z ! 4+ 1P,
=0

X DL+ 1 — 9)W i, 103(—2ikr) e, 145 (— 20kr,)
(1.4)
rpn>r, k= Cmo/h)?}, ImE >0, »=(a)

Here P, denotes the Legendre polynomial'® P,(cos 6).
6 is the angle between r, and r,. The functions
W and 9 are Whittaker functions as defined in
Buchholz,™*

z}(1+p)e¥z/2
mk;}u(z) - 11(1 + #)
X 1F1(%(1 + w F ki1 4 p; £2) 1.5)
. T _ 3Tllr,:};t(z)
Wuale) = g mu{ TG0 — w) — B
mk:—}u(z) }.
T ED S
[For p = 2I 4+ 1 the right-hand side of (1.6) is

to be interpreted as the limiting value as u — 21 + 1
(cf. Ref. 14 p. 20).]

Both the expansions (1.3) and (1.4) for the Green’s
function are quite standard. Now we want to go
a step further and sum the series (1.4). The key
formula for this prupose will be the integral rep-
resentation'®'®

W, =iu(bt)mk :}p(at) = t(ab)*

I(—k + 31 + w)
® 2k
X f ds(coth g) g HerD oot ob)isinh ) (1.7)

Re (—k 4+ 30 + »)) > 0,
Re (t) > 0, lare (8)| < =,

12 See, for example, Ref. 4, or see Sec. II of this work for
the analogous caleulation for the Klein-Gordon problem.

13 For Legendre functions and spherical harmonics, we use
the definitions of A. R. Edmonds, Angular Momentum in
Quantum Mechanics (Princeton University Press, Princeton,
New Jersey, 1957).

4 H. Bucholz, Die Konfluente Hypergeometrische Funktion
(Springer-Verlag, Berlin, 1953),

18 Ref. 14, p. 86, Eq. (5¢). The condition Re(z) > 0 stated
there is a misprint and should read Re(t) > 0 as in Eq. (1.7).

16 W. T. Howell, Phil. Mag. 28, 493 (1939). Also, for a
more detailed proof of (1.7) based on Howell’s paper, see
the author’s thesis (see footnote to title of this article),
Appendix I.

b>a>0,
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expressing a product of two Whittaker functions
with different arguments as an integral involving
a Bessel function of imaginary argument. If we
want to apply (1.7) to the products of Whittaker
functions occurring in (1.4), we are lead to make
the following identification of the parameters:

Eq. (1.7) i ” b a .
Eq. (14) » 214+ 1 2, 2rn —ik

The condition Re (¢} > 0 follows from Im (k) > 0.
The condition b > @& > 0 holds for r, > r, > 0.
We find, however, that the condition Re (—k +
1(1 + u)) > 0 is not satisfied for all Aw in the cut
plane. For this reason, Eq. (1.7) is not quite general
enough for our purposes. There is a standard trick
however by which we can generalize (1.7) so as to
eliminate the condition Re (—k 4+ (1 + u)) > 0.
In (1.7) this condition is required to make the
integral converge at the lower limit s = 0. By going
over from a real to a contour integral, we can go
around rather than through the origin, thereby
avoiding a possible singularity of the integrand at
the origin. By an analytic continuation argument,
we find that the resulting integral representation
holds without the restriction Re (—k-+1(14g)) > 0.
Using this method (but first making the change
of variables { = cosh s) we obtain the following
generalization of Eq. (1.7)"":

Wk;iu(bt)mk;'}u(at)
= —iab)le” "D 4 3(1 — u)
ey |

+oare ({+1)=

1.8

(1.9)
(1+)

LG+ D —

X &I (abPE — 1Y),
Re () > 0, lare (8)| < ,

This integral representation is still subject to a
condition on the quantity (—k + 3$(1 + u)), but
this condition is now much milder than before.
Because of this condition, there are still exceptional
points in the complex 4w plane for which the integral
representation breaks down for one or more terms
of (1.4). However these exceptional points are now
just the bound-state energy eigenvalues of the
system, and are not in the domain of definition

b>a>0,

17 The integration contour begins at { = + o, runs
down the positive real axis to a point on the right of { = +1,
circles the point ¢ = 41 in the positive (counter clock-
wise) sense, and then returns along the positive real axis to
¢ = - =, The angles of (¢ = 1) are determined along the
contour by continuity, their initial values at ¢ = <4 = being
arc(¢ = 1) = 0,
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of the Green’s function. Thus (1.9) may be applied
to the terms of (1.4) for any Aw value in the domain
of definition of the Green’s function. Using the
identification (1.8) of the parameters as before, we
find from (1.4) and (1.9)

1 e—vr’ 1
Olen 11, @) = G 33 a7 2
a+)
X dg-(g- + l)iv—}(g. — 1)_“—56”0("”‘”

+oare {{21)=0
X zz% 1+ 1)Ptlzz+1(“2'ik("'17'2)*(f2 - 1)%)- (1.10)

The condition r, > r,, which applies to (1.4), can
now be dropped, since r; and r, enter on the right-
hand side of (1.10) on equal footing and the Green’s
function is known to be symmetric in r; and r..
The integral representation (1.9} is seen to “extract
the Z dependence” of the sum in the sense that
the sum which we end up with in (1.10) no longer
has anything to do with the presence of the Coulomb
field. This sum is just a special case of the Neumann’s
series'®

Gy L0) = K 3 *Z,rﬁ‘zy‘:li)

X F(=L 14 p,v+ 1 kz)(_l)tl‘zun(z):

@I+ w

pyv,p—p #E —1, -2 -3, ..., (1.11)
From the relation
Pl(z) = ('—1)1 2F1(_Zy l + 1: 1; %(1 + Z)), (1‘12)

we see that the series occurring in (1.10) can be
summed using (1.11). We then obtain an integral
representation of the Green’s function in the form

G(r23 Iy w)

ik " (1+) .
- S_TSinh TV Jyoare (F£1)=0 di‘[(g— + 1)/(§ - 1)]

X et (9ot cos 16(¢% — 1Y),
k= Qmo/B)}, Im & >0, v= (ka)?,
a, = 4xh’/mZé.

Note that the nuclear charge occurs in the integrand
of (1.13) only in the factor [(¢ + 1)/(¢ — 1.
The remaining factors of the integrand, containing
the r; and r, dependence, are the same factors

18 G. N. Watson, A Treatise on the Theory of Bessel Funec-
tions (Cambridge University Press, Cambridge, England,
1962), 2nd ed. Equation (1.11) results from Watson’s formula
(3) p. 140 (Sec. 5.21) after making the replacement z — zeit=
and using the formulas in Watson (p. 77) relating J, and I,.

¥ E. T. Whittaker and G. N. Watson, A Course of Modern
Analysis, (Cambridge University Press, Cambridge, England,
1958), 4th ed. p. 312 (Sec. 15.22).

(1.13)
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we would have in the case of a free particle. We
refer to this property of the integral representation
a8 “extracting” the Z dependence of the Green’s
function. Because of this property of extracting
the Z dependence the integral representation (1.13)
may prove to be convenient for caleulations involv-
ing the Green’s function.”

The final integration in (1.13) can be performed
by another application of the integral representation
(1.9) for a product of two Whittaker functions with
different arguments. First we transform (1.13) as
follows:

G(rz, 1y, w)

10,1 &7
uou Srsinh 1 Jimareren-o

X (¢ — 17 (—dku(l® — 1,

u = 2ryr)t cos 36,

a+)

A + 1)

(1.14)
v =71 + 7,

We can now apply (1.9). For this purpose we need
two real quantities «; and o, such that a; > o; > 0
and

(1.15)

How + @) =7, ()t = u.

In terms of «,; and «, we find

G(rz,rx, CQ)
'l — ) @ . )
= (4wiquﬂ)5;, orit(— k)M, 3 (—ikery).  (1.16)

The solution of (1.15) for e, and o, is
[+ ) =v+(7)2 _uz)} =n+r-+ [1'2”“1'1';

a,=1)—(02—u2)%=?‘1 +7'2"" ‘1'2""1'1‘,

(L.17)

and the final expression for the Green’s function
is found to be™

Tl — )
dr {1, — 1y

Wy g(— ko) Mey y(—ikar)
Wevig(—ikes) 9L, 5(—1kay)
=1 +r+n—n| k= Cmn/k?, Im &) >0,
ay=r+rn—|n—n| r=(a)

a, = 4xh’/mZé.

Here the dots over the Whittaker functions denote
differentiation with respect to the arguments of the

G, 0, 0) = —

X det [ :' , (1.18)

26 An integral representation for the nonrelativistic Cou-
lomb Green’s function involving a double integral (and also
having the property of extracting the Z dependence) has been
given by Wichmann and Woo. (Ref. 6).

2t For an g posterior: derivation of (1.18), which makes no
use of infinite series, see L. Hostler and R. H. Pratt, Phys.
Rev. Letters 10, 469 (1963).
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Whittaker functions. The determinant here has
the form of a Wronskian except that the two
arguments are different.

It may be of interest to look at (1.18) in various
special cases. The free-particle Green’s function
(—4r |r, — 1,])7'e*'"™"! is obtained from (1.18)
on setting the nuclear charge Z equal to zero,
whereby the Whittaker functions go over essentially
into spherical Bessel or Hankel functions.?” Another
special case of (1.18) which may be obtained quite
easily is

G(r2: 07 w)
= —(ar)'T(A — W)W,y (—20kr).  (1.19)

This is in agreement with the expression previously
obtained by Meixner' for this special case. Also,
in Sec. IV [see Eq. (4.1)] we give the asymptotic
form of (1.18) for r, — = in a definite direction u,.
II. APPROXIMATE KLEIN-GORDON COULOMB
GREEN’S FUNCTION
We will here give two derivations of an approx-
imate Klein—-Gordon Coulomb Green’s function. In
order to show the equivalence of the two approxima-
tion methods, we start out working not with the
Klein—Gordon equation itself but with the “general-
ized” Klein—~Gordon equation
2ib 9 m’c

2_ 18 20639 a_z__> _
<V T atTE /=0

2.1)
where b and a are regarded as independent real
parameters. Here and subsequently, the formulas
may be specialized to the Klien—Gordon case by
choosing b = @ = Ze’/dwhc. We assume b > 0
and —%1 < a < 4 1. The condition b > 0 is imposed
for definiteness in order to make the bound states
of (2.1) lie in the positive frequency spectrum
rather than in the negative frequency spectrum.
The condition —% < a < 4 % ensures that the
stationary-state solutions of (2.1) with a definite
angular momentum will meet the boundary con-
ditions

$
Ty —0 } as r—0 ©2.2)
', V¢ —0
at the origin for each ! valuel = 0, 1, 2, --- .

The boundary conditions (2.2) at the origin are in
22 Ref. 14, p. 24, Eq. (29a), and p. 13, Eq. (11a):

WO ;iu(z) = (Z/W)iK}“(%Z),

Mogu@) = Em{IG2)/TGA + w)}.

(Here K denotes the Hankel function of imaginary argu-
ment, as defined in Ref. 18.)
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turn required to ensure that the stationary-state
solutions of (2.1) belonging to different frequencies
be ‘“orthogonal,” and that the net particle flux out
of a sphere with center at the origin will approach
zero as the radius of that sphere approaches zero.
“Orthogonal” in connection with (2.1) means with
respect to the (not positive-definite) inner product

Wy =i [ &
L

The Green’s funetion Gge(rs, 1y, w) corresponding
to the wave equation (2.1) is the solution of the
differential equation

[V3 + @)/ry + k* + a®/ri)
X 91{(;(1'2; Iy, w) = 53(1'2 - rl)) (24)
v = bo/ke, k= (/)" — (me/RY), Im (k) > 0,

subject to the boundary conditions (1.2) at the
origin and at infinity. Here w is a complex number
not equal to one of the frequencies, positive or
negative, of the stationary-state solutions of (2.1).
As in the nonrelativistic problem, we can show that
the Green’s function defined by (2.4) and (1.2) is
unique and symmetric.

Green’s Function for the Klein-Gordon Equation
without the Potential Squared Term

If we neglect the potential squared term in the
differential equation (2.4), then (2.4) goes over into
the equation of the nonrelativistic Green’s function,
excepting only that the meanings of the parameters
k and v are different. Denoting by G, the Green’s
function so defined, we have

[V§ + Qkv)/rs + kz]Go(rz, n,w = 63(1'2 -r), (2.5)
v = bw/ke, k = ((w/c)* — (me/B)))}, Im (k) > 0.

Equation (2.5) together with the boundary condi-

tions (1.2) can be solved exactly using the preceding

methods. G, as defined by (2.5) and (1.2) is the

exact Green’s function for the Klein—Gordon equa-
tion without the potential squared term:
2 19 269 m2c2> _

(v o T aa " m /=0

An “eigenfunction” expansion similar to (1.3) can

be derived using the space parts of the stationary-

state solutions of (2.6) as basis functions.” As in

(2.6)

28 See the treatment of the almost identical problem in
connection with the Green’s function (2.4).
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the nonrelativistic case, the integration over the
continuous spectrum can be performed, leading to
& series similar to (1.4), which can then be summed
using the integral representation (1.9) for a product
of two Whittaker functions with different arguments.
As one would expect from the similarity of equations
(2.5) and (1.1), the expression obtained for @, is the
same as the expression (1.18) for the nonrelativistic
Green’s function, excepting only that k and » are
replaced by their values as defined in (2.5). The
integral representation (1.13) also applies to G,
when & and » are as defined in (2.5).**

Equation (2.4) of the generalized Klein~Gordon
Green’s function can be converted into the integral
equation

gKG(27 1) =
— f d’rsGo(2,3)(a*/13)Gxc(83,1),

with the help of the Green’s function G, of the
Klein-Gordon equation without the potential
squared term. By iteration, the integral equation
(2.7) will give Gk in the form of a perturbation
expansion, the potential squared term being treated
as a small perturbation. The Green’s function of
the Klein—Gordon equation without the potential
squared term is the first term in this perturbation
expansion. Since the parameter a does not enter
in @,, the perturbation expansion for Gxe will be
just the Taylor expansion of Gk in ascending powers
of a, with only even powers of a occurring in the
expansion.

We can obtain the same power series expansion
of Gxe working from the partial-wave expansion of
Gka, by expanding each partial wave of Qg in
powers of a and then combining the contributions
from all partial waves to like powers of a. Now we
find that the parameter a enters the Ilth partial
wave of the partial-wave expansion of Ggg only
through the parameter y defined by v + 1
I+ H(A — &%/ + ). Consequently, the Taylor
expansion of the /th partial wave in powers of a is
at the same time effectively an expansion in powers
of the parameter a/(I 4+ %), considered small in
comparison to unity. It follows that the perturbation
expansion of Gxq treating the potential squared
term as a small perturbation is identical, term by
term, with the result of expanding each partial
wave of Gxg in powers of the parameter a/(I + 2)
considered small in eomparison to unity and collect-

Go(2,1)

2.7

24 In this case the exceptmna] points for the integral rep-
resentation (1.13) are w = 0, and w = = one of the frequencies
of the bound-state solutmns of (2.6).
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ing together terms belonging to like powers of
a/(l+%). In particular, the approximation Gxg R Gy,
being the first term in the perturbation expansion,
is identical with the result of collecting together
the constant terms in the Taylor expansion of
the partial waves, neglecting all terms of order
a’/(l + 2)**® in comparison to unity. This neglect
of terms of order a*/(! 4+ %)® in comparison to
unity is strictly analogous to the approximation
introduced by Furry®>*® in connection with the
Dirac Coulomb continuum states. Hence we call
the resulting expression for Gk the Green’s function
in the “Furry approximation.” By the foregoing
discussion, the Green’s function of the generalized
Klein—Gordon equation in the Furry approximation
is the first (zero-order) term in an ordinary perturba-
tion expansion of Gxq treating the potential squared
term as a small perturbation, and is identical with
the exact Green’s function for the Klein~Gordon
equation without the potential squared term.

Of course, we are not primarily interested in
CGxc but in the Green’s function of the Klein—
Gordon equation itself, obtained from Gge by
specializing the values of the parameters b and a
to b = a = Ze*/4whc. But by working with Ggq
we are able to show the equivalence to all orders
of the two approximation methods—one treating
the potential squared term as a small perturbation,
the other involving an expansion in powers of
a/(l + %) occurring in the parameter v in the
partial-wave expansion. The equivalence of the two
approximation methods for the Klein—Gordon case
itself is thereby also established.

Cke 1n the Furry Approximation

We will here obtain the partial wave expansion
of Gre, and show that the parameter a enters only
through the quantity y. We write the stationary-
state solutions of (2.1) in the form

'l/p(r’ t) — ¢p(r)e~(i/~k)e,Et,
=41 p=1, 2.8)

Here E > 0. The quantum number p distinguishes
between positive and negative frequency states.

25 There being no terms linear in a/(l + 14).

% Actually, Furry made a high-energy approximation in
addition to the high angular momentum approximation, cor-
responding to a?/(l + 3)* K 1. However, we here do not
include the high-energy approximation under the term “Furry
approximation,” whether in connection with the Green’s
functions or the wavefunctions. (It was shown later!? that
the high-energy approximation ig not required to obtain an
expression in closed form for the wavefunction, and that
making the high angular momentum approximation alone
leads to the Sommerfeld-Maue wavefunction.?)

e, = —1 p=2,
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The solutions for ¢*(r) corresponding to sharp L.L

and L, are
Continuum States:
¢}m(k; l') = Ri(k. T) Ylm(ur))
din(k; 1) = Ri(k; )Y (u,), (2.9)

Rf(k;r) = k(hC/ﬂ'E)*I'(]_ + L% _'_ zv)eep}(rr)
x (—2ikrep)_lmir:1+}(—2ik’rep),

The quantum number & runs over the continuous
spectrum 0 < k < + . E = + he(k* 4 (me/B)HL
visdefined by v + 3 = (I + 3)* — &*)}, » = bE/hck.
Y:,.(u,) denotes the spherical harmonic *of the polar
angles of the unit vector u, in the direction of r.
Bound States:

¢nlm(r) = Rnl(r)Ylm(ur)

[ (n — ! ]*
bT(m + 2y + 1)
X @m)"e "L (2m);

v is defined as in (2.9). n = +((me/h)* — (Eai/he)®)},
Ea = md/[l + v /¢v + n)’]’. The quantum
number n takes the values n = 1, 2, 3, --- , in-
dependently of the quantum number 1. L2*}'(2qr)
are the Laguerre polynomials as defined in Ref, 14.

The wavefunctions are normalized with respect
to the metric (2.3) such that

@ (6) | $5n()) = €08, B117 Brm: 86 — &),
<¢u’l’m’ |¢nlm) = 81»:’6”'57111’:’;
<¢;:m'(k,) I¢nlm) = (.

We expect to be able to obtain an expansion
of the Green’s function Ggg in a form similar to
the eigenfunction expansion (1.3) of the non-
relativistic problem, using the space parts ¢°
[Egs. (2.9), (2.10)] of the stationary-state solutions
¥° of the wave equation (2.1) as basis functions.
However, we have as yet no expansion theorem
using the functions ¢ as basis functions. We do
have an expansion theorem for the full time-
dependent functions y°. This expansion theorem
states that any physically admissible solution f(r, ¢)
of the wave equation (2.1) can be expressed as a
linear combination of the stationary-state solu-
tions ¥°:

ey=33 3

p=1 Il=0 m

(2.10)

nl (1')

2.11)

f dk @ () nll; 1, ©)

+ Z Z GnimPnin(T, 1).

n=1 =0 m=—]

(2.12)

The expansion coefficients are found to be
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ain(k) = e,(n[/‘,’,,,(k;r, ) l fe, 8,
Quim = <¢nlm(r7 t) I f(r) t)}'

But we are looking for an expansion theorem for a
function (Gxe) which does not have anything to do
with the time. We find that we can obtain such an
expansion theorem from (2.12) by specializing to
the case t = 0. When we do this we find certain
striking differences between this and the non-
relativistic problem. These differences are due to
the fact that we are now dealing with a wave
equation which is second order in the time derivative
rather than first order.

Writing out the expressions for the coefficients
(2.13), substituting in (2.12), and letting ¢ = 0,
we obtain

frn0) =33

1 ©
Y% [ ke
l=0 m=~1 J0

p=1

X [ drtall; rOtah; )

(2.13)

X {f, 0)/6 — (Ge,B5/Re) + (20b/r))f(rs, 0)}
+ § ZO mZ—:l f d37'1¢nzm(r2)¢:zm(f1)

X {fx1, 0)/c — (GEu/Re) + (2ib/r))f(x:, 0)}. (2.14)
Equation (2.14) is beginning to look like the desired
expansion theorem expressing a space function f(r,, 0)
a8 a linear combination of the functions ¢°. Since
the initial value f(r, 0) of a solution f(r, f) of the
wave equation (2.1) may be arbitrarily prescribed,
this expansion is indeed applicable to an arbitrary
space function f(r;, 0). However, in (2.14) we notice
a striking difference from the nonrelativistic problem.
The right-hand side of (2.14) seems to depend on
f(x, 0) in addition to f(r, 0). Now since we are
dealing with a wave equation which is second order
in the time derivative, f(r, 0) can be arbitrarily
prescribed as well as f(r, 0). Hence f(r;, 0) must
somehow disappear from the expansion (2.14) of
f(rs, 0). How this happens can be seen in the follow-
ing way. In (2.14) we can substitute f(r,, 0) =
f(r,, 0) = 0. From the fact that f(r, 0) may still
be arbitrarily prescribed there follows the identity

2 ™
=22 X

p-llOm -1

+ E E Z Gn1m(T2)Dm1m(T1).

na=1 =0 m=—1

¢, f et ; 12)i220k; 1)

(2.15)

This shows that the functions ¢* are linearly de-
pendent. In fact, (2.15) contains infinitely many
linear dependency relations between the functions
¢°(r2), there being one such relation for each point
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1, in space. The functions ¢ still form a complete
set however—i.e., we do obtain an expansion
theorem. As a consequence of (2.15) not only the
terms of (2.14) involving f(r,, 0) but also the terms
involving the potential b/r, drop out. Using the
fact that f(r, 0) can be arbitrarily prescribed, we
find*

53(1'2 — 1)
= E ZE | * db (B/he)btulh; 16 (b; 1)
+ i i ; nl/hc)¢n11n(r2)¢nlm(r1). (2.16)

n=1 l=0m

Equation (2.16) is the completeness relation that
we are looking for.

We now want to use these relations to obtain
the expansion of the Green’s function Gge using
the functions ¢° as basis functions. From the
differential equations satisfied by Gz and ¢° we
obtain the identity

[ #r €)1 + eB)/he + 25/r,
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gKG(rZ) Iy, w)
© !
¢in(k; 1'2)¢ (k L)
> 3 ghe f dk -
¢nlm(r2)¢nlm(r1) .
ho — Enl

As in the nonrelativistic case, we can do the
the integration over the continuous spectrum.
Defining

0 m=-1
@ 1

(2.18)

< R”(k r)RY (b ry)
gephcf ey s CAL)
we have
=2l + 1
SKG(r27 rl) (.U) = Z 4+ PlJl
i=0 T
+ AP 3 peTntllil) o)

where P, denotes P, (cos 6), 8 being the angle
between r, and r,. Substituting the explicit expres-
sions (2.9) for the radial funections R{ and using
the identity®®

e:t TikW—Mu(ze* ri)

mk;%u(z) = /1 —
X Gualts, 11y 0) = hed?"(0)/ o — GB).  @.17) s mn
Multiplying on the left by e6°(r,), summing and + ¢ TG F )W _,;:;],‘C()z) , 2.21)
integrating over all states, and using (2.15) and 2 K
(2.16) now gives the desired expansion of Ggg: (2.19) can be written out in the form®
* dk oy Weyinir(—2ikr)e” V9, (26k
J, = h202/4m'1r2[/; E,‘ F(l + v - 11/) VL( L Tz);lw p— e i( ? 7’1)
d@ W_i,;7+%(2ik7‘2)m_i,,;7+%(27:k71)
+ \ Il + v+ w) b — E
_ dk Wiy iy s3(=20kr) M sy 4 4(—21kry)
— i’g : Wl’v:7+}L(2ikr2)e”(7+l)m—c‘vw+§(_2ikrl):|
| rd 4y — w) o ©E , (2.22)
E = +he(k* + (me/R)).
Using the identity™ My gu@) = e W90, (2™, (2.23)

27 Considering the time derivative of (2.12) rather than
(2.12) itself leads to the additional relation

2b .
_ 53(1'2 —r)
1

T o f GR(E/ 1) 8en(; 1) (k; T2)

m

Mw

4

["JB i
g[\’le M
3

nl/hc) 2¢nlm(r2)¢:l m(rl) .

Eg. (20a).

-

n=

28 Ref. 14 p

the phase factors ****"*" occurring in the 1st and

4th terms of (2.22) can be absorbed in the 9% func-
tions. Changing the integration variable from % to
E = +he(&® + (me/h)*) in the first two integrals
and to E = —he(k* + (me/h)*)? in the last two,
we obtain

29 We use the upper or lower signs in (2.21) as required
to stay on one branch of the Whittaker functions.
30 Ref. 14, p. 11, Eq. (5a).
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_ *me* dE oy Wi an(—20kr) W, .o o5 (—2ikr

Ji = (4aryry) l[fw 7 Tt +y—w) 124 E”ihw"*( 1)

e C_ZE W1 . W—t’v;7+}(2ik’r2)m—iv:'y+<}(27:krl)

- +mc’k1(1+7+“’) E — hw
mme? d_E_ o Wi,.;7+§(_21‘]07‘2)%,‘,;74.*(_21:’971)
+ [ Era+y-w e
~ dE Wiy (2ikr, srz_,.,w(zikrl)]

> TA + v+ @) T — 7o , (2.24)

k= +(E/hef — (me/B))}.

We now define k for general values of E on
the complex plane less the two branch cuts
—o < B < —mc® and +mc® < E < + o, This
definition is '

k= (B/he)® — (me/R)*), 0 < are (k) <.

It is seen that Im (k) > O for all E on the cut plane.
The function
1

MI‘(I-I-v—W)

(2.25)

Wn;-y+;("27;79"'2)3“5&;7&(_27:]”1)
E — o

X (2.26)
with & defined by (2.25) is seen to reduce to the
integrands of (2.24) when evaluated above or below
the positive or negative energy branch cut. Thus
the terms (2.24) can be interpreted as the contribu-
tions to a contour integral of a single function (2.26),
the contour consisting of two disjoint parts running
along the positive and negative frequency branch
cuts so as to circle the branch points E = +mc® in
the counterclockwise sense. Using the equations®

Win@) ~2e ¥, 2] > o, |are (2)| < 2r, (2.27)
z—ke—%%s
M@~ TG40+ 0 — B
+ zke_'/z d:ari[k—}(l+u)]’ (228)

TGO+ +8)°
[z > «; uppersign: —3r < arc () < +1ir,
lower sign: —ir < are (2) < +3r

for the asymptotic behavior of the Whittaker func-
tions W and 9, we can compute the asymptotic
behavior as |E| — o« of the integrand [the function

3t Ref. 14, p. 91, Egs. (1a) and (3). For —¥r < arc(z)
< -+14m, both the upper and lower signs apply in (2.28), and
there appears to be a contradiction. However, for these values
of arc(z) the ambiguous term is of smaller order of magnitude
than the other, and is to be neglected (cf. “Stoke’s phenome-
non’’ in Ref. 18).

(2.26)] of this contour integral. For r, > r, we find
that the contour may be closed by semicircles
“at infinity” in the upper and lower half-planes
[here we require the condition Re (k) > 0]:

dE .
Ji = 9§41rkr1r2 I +v — )

Wiv;7+§(_2’£k7.2)miv;'y+}(_2ikrl)
E — ho ’

X (2.29)

Ty > Ty

The contour is now a closed loop enclosing the
entire cut plane. The integral J, = —2x¢ times
the sum of the residues of the integrand on the
cut plane (the contour circles the plane in the
negative (clockwise) sense). The poles of the
integrand are the poles of the Gamma function
I'(1 + ¥ — ), and the pole at E = hw. The poles
of the Gamma, function oceur at precisely the bound-
state energy levels of the system. The residues
at the poles of the Gamma, function can be evaluated
explicitly in terms of Laguerre polynomials.** The
residue at the pole E = hw is simply the integrand
[less the factor (F — %w)™'] evaluated at E = hw.
When the resulting expression for J; is substituted
into (2.20) it is found, as in the nonrelativistic
problem,* that the contribution to the first sum
of (2.20) coming from the residues at the poles
of the Gamma function exactly cancels the con-
tribution to Gxe from the sum on bound states
[the second sum of (2.20)]. The only surviving
terms after substitution into (2.20) are the con-
tributions to the first sum coming from the residues
at the pole £ = fiw. Thus,

32 Ref. 14, p. 135, Eq. (1):

F(n + i;lv + 1) z_§(1+u)e+§z
n!
(="

- T z—%(1+u>e+%z W,.+;<1+,‘) ;,,‘(z).

L:»L(z) = mn+}(1+u) :iu(z)
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ng(rz; rly O)) = (87”:]97‘17'2)-1 i (2l "I" I)Pz
i=0

X T + v — @)W,y ai(—23kr) M, 43 (—20kry)
1>y, k= (/e ~ (me/R))}, Im (k) >0,
v = bo/ke, (v+3) = (141" —a’)

a is seen to occur in the partial-wave expansion
(2.30) only through the parameter v, as previously
stated. This justifies our earlier statement that the
perturbation expansion of Gxq treating the potential
squared term as a small perturbation is equivalent
to the expansion of the Ith partial waves of (2.30)
in powers of the parameter a/(l + 3).

Except for the difference in the meanings of the
parameters %k and », the expansion (2.30) of Gge
only differs from the corresponding expansion (1.4)
of the nonrelativistic case in the replacement of I
in (1.4) by v in (2.30). This replacement of I by v
is the most serious obstacle in trying to sum the
series (2.30) exactly. In the Furry approximation,
where we neglect the a®/(I + 1)° term in comparison
to unity in the expression for v, y goes over into
! and the series (2.30) becomes essentially identical
with the series (1.4). It can then be summed using
the same method as in the nonrelativistic case, and
its sum is given by the same expression (1.13) or
(1.18) as before, except that k and » are as defined
in (2.30). This expression is just the Green’s function
G, of the Klein—Gordon equation without the
potential squared term, as we know it must be.

II. APPROXIMATE DIRAC COULOMB GREEN’S

FUNCTION

The Dirac Coulomb Green’s function K(r,, r,, ») is

defined as the solution of the differential equation®®***

|:,yo<<£ + 2) + iy, — %C]K(rz, r, w)

(9 T2
= 53(1'2 — 1) @.1)
3 A Note on notation: We use the metric
41
ur —1
g’ = , w,v=20,1,2 3.
-1
—1

We define +° =1 B8 gnd 1123 = Boy 2,5 B and « are the 4 by 4
matrics 8 = O—-1>’ « = (06 3) Here 0 and 1 denote the

2 by 2 null, and unit matrices, respectively, and the ¢ are
the usual Pauli matrices. Subsequently, ¢ will denote either

the 4 by 4 matrix g‘
the Pauli matrices themselves, depending upon the context.

# The delta function on the right-hand side of (3.1) is
understood to be multiplied by the 4 by 4 unit matrix,

60) made up of the Pauli matrices or
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a = Ze*/4rhe,

subject to the following boundary conditions at the
origin and at infinity:

rs — 0

. K(t;, 11, w) > 0 as or 3.2)

Fg — oo,

As before, Aw is a possibly complex number not in
the eigenvalue spectrum of the Hamiltonian of the
systemn. By use of Green’s theorem it can be shown
quite straightforwardly that the Green’s function
as defined by (3.1) and (3.2) is unique and possesses
the following symmetry property: -

K@, 1, 0) = TR, 1., o)T. 3.3)

The matrix T °y’y' is both Hermitian and
unitary. The wavy line over K in (3.3) denotes
the ordinary transpose of the 4 by 4 matrix K.
Applying (3.3) in (3.1) leads to an alternate form
of the differential equation of the Dirac Green’s
function,

—
K(r,, 11, w)[70<§ + _@) — -V, — Zn}};q:l

Ty

= 8%, — ). (3.4)

The Green’s function K can be expressed in
the form

K(rs, 11, w)

= [70(‘6.9 + 1‘3) + v Va + %]G,(rz, n, o (3.58)
—
= Gl "’)[”’0(3’ +8) -V %} (3.5b)

where (; is the Green’s function of the iterated
Dirac equation

,_ L3
(V cof K
2ia 3 ! + tae-u,
B ) (Y MEE)

This is explained as follows. If G, satisfies the dif-
ferential equation (3.9) (with b = a = Zé’/4rkc)
for the Green’s function of the iterated Dirac equa-
tion, then the expression on the right-hand side of
(38.5a) satisfies the differential equation (3.1) of the
Dirac Green’s function. One can check that if G; is
taken to be the Green’s function of the iterated
Dirac equation then the expression on the right-hand
side of (3.5a) also satisfies the boundary conditions
of the Dirac Green’s function. That the expression
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(3.5a) gives the Dirac Green’s function when G; is
taken to be the Green’s function of the iterated
Dirac equation now follows, by uniqueness. Similarly,
the expression on the right-hand side of (3.5b) will
satisfy the differential equation (3.4) of the Dirac
Green’s function if G; satisfies the alternate form
(3.10) (with b = a = Zé*/4whc) of the differential
equation of the Green’s function of the iterated
Dirac equation. Again checking the boundary
conditions, it follows that the Dirac Green’s function
is also given in the form (3.5b) where G, is the
Green’s function of the iterated Dirac equation.
It can be shown that the frequency spectrum of
the iterated Dirac equation is the same as the
frequency spectrum of the Dirac equation itself,*
as it must be for relations like (3.5) to be meaningful.

We will give two derivations of an approximate
expression for @, entirely analogous to the two
derivations of the approximate Klein-Gordon
Green’s function considered in Sec. II. As in Sec. II,
to show the equivalence of the two approximation
methods involved we will be working not with the
iterated Dirac equation itself, but with the “general-
ized” equation

.18 2o
(v T er ot
22 2 »
_me L) o, )

where b and a are independent real parameters with
b > 0 and & < £.*° The physically admissable
solutions of (3.7) must remain bounded as r — «
and must satisfy the boundary conditions (2.2) at
the origin. The inner product associated with (3.7)
is given by ‘

@lo=i[aofplie 108, 2,3
$=9¢'8 (38

The Green’s function G,(r,, r,, @) associated with
(3.7) is the solution of the differential equation

@ 4+ taa -u,)
2

2

(vi+ 22 pp s
T2

X 91(1'2, rly (.0) = 53(1'2 - 1'1), (3.9)

. % For a discussion of the relation between the two equa-
tions, see R. P. Feynman and M. Gell-Mann, Phys. Rev. 109,
193 (1958).

.3 We do not consider the case a®* > 34. If a® > 34 there
will be a finite number of J values for which the “regular’’
and “irregular”’ solutions corresponding to I = J—14 [see
Egs. (3.23) and (3.26)] change roles. For a given a, J values
(if they exist) such that J(J 4 1) = q¢? appear to be excep-
tional in that neither (the “regular’’ nor “irregular”) solution
meets the boundary conditions (2.2) at the origin.
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v = (bo/ke), k= (/)" — (me/B))}, Im (k) >0,

subject to the boundary conditions (1.2). G; as
defined by (3.9) and (1.2) can be shown to be unique
and to possess the same symmetry property (3.3)
as the Dirac Green’s function. Using this symmetry
property, we obtain the differential equation of
the Green’s function in the alternate form
— 2 ey e
Gz, T, w)(vf + 2 1—+;’M>
1

1

= §%r, — ). (3.10)

Solution by Perturbation Theory

An approximate expression in closed form for
G; can be obtained using perturbation theory (along
the lines of Meixner?). This method is entirely
analogous to the corresponding treatment of the
(generalized) Klein-Gordon ease given in Sec. II.
The differential equation (3.9) can be converted into
the integral equation

91(2; 1) = G0(2) 1)
- [enee g m 1, @

with the help of the Green’s function G, of the
Klein—-Gordon equation without the potential
squared term. By iteration, the integral equation
(8.11) will give G; in the form of a perturbation
expansion. Since @ does not enter into G, this
perturbation expansion will be just the Taylor
expansion of G; in ascending powers of a. Keeping
only the first two terms, constant and linear, in
this expansion gives the following approximate
expression for G;:

G2, 1) &~ Gy(2, 1)

— [ @rGu2, 3)6aeu/)EG, 1. (3.12)
The integral in (3.12) for the “spin correction”
term can be evaluated quite simply working with
the differential equation (2.5) satisfied by G,.
Changing r, to r; in (2.5) and applying the gradient
operator V; to both sides of the equation, we find

[V: + @kv/rs) + kz]VsGo(3; 1)

- (QkV/Tg)usGo(?’; 1) =V, 53(1'3 —1). (3.13)
‘We now multiply on the left by Go(2, 3) and integrate
over all r;. After performing a number of integrations

by parts—which are permissable, since Go(2, 3) and
Go(3, 1) decay exponentially as rs — «—we find
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[ @62, BV + @) + K1,643, 1)

- f BryGo(2, 3)(2hv/rDuGo(3, 1)

~ [ ¢nre - Vi@, 3. 510
Using (2.5) again and carrying out the integrations
over delta functions, find

[ @n6ut2, (@i /643, 1
= (V. 4+ VG2, 1). (3.15)

With this result, our approximate Green’s function
(3.12) can be written in the form

G2, 1)
~ Al — @a/2)e-(V, + V)IG2, 1).  (3.16)

The result (3.16) (for b = a Ze?/Anhe) is in
agreement, except for terms of order a’, with the
exact result obtained for the special case r, = 0
by Martin and Glauber.®

When used in conjunction with (3.5a) or (3.5b),
the result (3.16) leads to an approximate Dirac
Coulomb Green’s function. However, the resulting
expressions for K(r,, r;, «) obtained from (3.5a)
and (3.5b) are not quite the same, the difference
consisting of the product of the potential terms of
(8.5a, b) times the spin-correction term of (3.16).

The approximation method by which we arrived
at (3.16) parallels closely the derivation by Sommer-
feld and Maue® of an approximate Dirac Coulomb
wavefunction with modified plane-wave behavior at
infinity. They too worked from the iterated Dirae
equation and used perturbation theory, treating
the (a® + iae-u,)/r* term as a small perturbation.
The “Sommerfeld-Maue”’ wavefunction was ob-
tained by neglecting the potential squared term
and keeping only the first correction due to the
spin term—the same approximation involved in
(3.16). Now it is known that, for the wavefunction,
the Sommerfeld-Maue approximation is equivalent
to the Furry approximation.’® We will show that
the same is true of the Green’s function: the expres-
sion (3.16) for G, is identical to the expression
obtained by neglecting terms of order o’/(J + 1)°
in comparison to unity in the (lJ)th partial wave
of the partial-wave expansion of the exact Green’s
function G;. We find in faet, in complete analogy
to the Klein—Gordon case, that when the power-
series expansion of G; in ascending powers of «
is obtained by working from the partial-wave expan-
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sion of the Green’s function, then the expansion
parameter for the (IJ)th partial wave is effectively
a/(J + 3). This is the reason why our perturbation
calculation of G;, keeping only the constant and
linear terms in e, is equivalent to the negleet of
terms of order a’/(J + 3)* in the (IJ)th partial
wave of G, Before we can show this, however,
we require the explicit expression for the partial-wave
expansion of the exact Green’s function G;.

Derivation of the Partial-Wave Expansion of G;

We write the stationary-state solutions of (3.7)
in the form due to Biedenharn® and Martin and
Glauber.® We define :

Vi ) = O,
—_ ]_’

(3.17)
e = +1, p=2.

Here we have E > 0. The positive and negative
frequency solutions are distinguished by the quantum
number p. ¢°(r) is written in the form

p=1, ¢ =

¢(r) = Sx'(x), (3.18)
where®®
S = cosh (36) 4 7e-u, sinh (36), (3.19)
6 = tanh™' (a/K), (3.20)
K=46L+1. (3.21)

e-u, commutes with any even function of K and
anticommutes with any odd function of K. The
functions x”(r) can be taken to be simultaneous
eigenfunctions of L-L, J-J, J,, and 8. Here L and
J = L + ¢ are the orbital and total angular
momentum operators, respectively, of the particle,
measured in units of A. The simultaneous eigen-
functions of J-J and L-L are at the same time
eigenfunctions of K, the eigenvalues being

1) — =J -1
K - {+(J+ H=14+1 for 1=J—1, (3.22)
—J+% == for I=J+ 1.
The expressions for x*(r) are
Continuum-State Solutions:
X%;M(k;r) — [RlJ(k;T)QlJM(ur)J , (3.23)
0

il 1) = [R 0 ] ,
100e; Qs u(u,)

fo(k; 7) = k(he/zEPT( + v + i)t
X (—2ikre,) ' M, 4 3(—21kre,).
The quantum number % runs over the continuous
WBiedenharn, Phys. Rev. 126, 845 (1962).

38 Qur K differs from that of Biedenharn and of Martin
and Glauber by a factor 8.
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spectrum 0 < k < + . E = +he(k® + (me/h)%)},
v = (bE/hck) (as before). The v values are given by

14+ (@41 —a) =
-1+ ((J + %)2 - az)g’ l=J— %y (324)
P —a) =+ 1) - e

I=J+1%

The states are normalized with respect to the metrie
(3. 8) such that
W5 (K t) | YiTak; ot))

= elall’epspﬂ'allls.].”5MM'6(k - k,))

e = +1 ) —1 y § = 2.
The first superseript here, s, is the quantum number
indicating the eigenvalue of 8:fors = 1 8 = 1 and
fors =28= —1,
Bound-State Solutions:

(3.25)

s=1; ¢ =

Xorra(e) = {R"”(””””(“')} . 326
0

X:IJM(r) = { 0 j| )
anJ(T)QzJM(ur)

A 2[2 (m — 1! ]*
me"Lb T + 2y + 1)

X (29r)7e " L2 (2n).
v is defined asin (3.24), 5 = +((me/h)* — (E,,,/hc)®)},
E.; = +mé*/(1 + b*/(y + n)>)%. The quantum
number n runs over the valuesn = 1,2, 3, --- |
independently of the quantum numbers ! and J.
Since there are no negative frequency bound states,
the quantum number p has been omitted here.
The normalization is

(‘p;:l’J’M’(r) ) | YnioulT, 1)

= eaan’Srm'all’aJJ’BM]\l"

R.,() =

(3.27)

Also, each bound-state wavefunction is orthogonal
to each continuum-state wavefunction.

The angular functions $;;)(u.) in (3.23) and
(3.26) are the simultaneous eigenfunctions of L-L,
J-J, and J, where J = L 4 16, ¢ now denoting
the Pauli matrices. They have the explicit rep-
resentations

Qryruu,) = [[(‘] + M)/2J]§YJ—;M—;(11,)

j, , (3.28)
((J — M)/2J]*YJ_;M+;(11,)

QJ+}JM(ur)
_ [ (T +1 = M)/@J + 2PV riyay(u,) ]

—[(J + 1+ M)/@J + 2P Y s1yan3(,)
and they have the important property
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d'u,Q”M(u,) = QVJM(uf), l + l' = 2J. (3.29)

An “eigenfunction” expansion for G;, similar to
the expansion (2.18) of the generalized Klein—Gordon
Green’s function, can be derived using the functions

&1 5(k; 1), é,52(r) as basis functions. The expan-
sion is

2 2

Z Z Z hCé.ep

8=1 p=1 lJM

® o ulk; rz)éuu(k;lﬁ)
X | dk o

91(1'2, Iy, w) =

2 o

¢:.1JM(1'2)<5;11M(1'1).
XL e T

(3.30)

We omit the derivation of this expansion, since it
is practically the same as the derivation given in
Sec. II of the corresponding expansion for the
Klein—-Gordon problem. Define

T1-2 = COSh '%l// + ’I:Ot'ul,z Sinh '%ll/, (3.31)

where ¢ denotes the eigenvalue (depending upon 1
and J) of 6 associated with the functions x. By
(3.18) and (3.19), we have ¢ = Tx, ¢ = x'T'8 =
x'88T'8. Now BT'8 = T, whence ¢ = x'8T.
Each function x is an eigenfunction of 8, the eigen-
value being ¢, Thus ¢ = ¢x'7T. Inserting this
expression for the functions ¢(r,) oceurring in (3.30)
and using the fact that & = +1, (3.30) becomes

2

ZZ theﬂ

=1 p=1 lJM

gl(rh Iy, w)

® xiru(k; rZ)XlJM(k; r)
X [ L v

©

+ E Z Z kT, anJM(r2)anJM(l'l) 7.,

8=1 n=1 IJM - EnlJ

(3.32)

The sums on s and M here can be worked out
explicitly. Referring to the expressions (3.23) and
(3.26) for the functions x, we obtain

22 Z hee,

91(1'2, ry, w) =
p=1 1J
X [ R”(k TZ)R”F(]’C i) T2A;(az, u)T,
Jo
= w s (r2)RE 5 (ry
+ Z; g’: h h‘;(r ) EvlJ(T) TZAIJ(uz, ul)TI) (3.33)
where
2 QZJM(u2)Q:JM(u1) 0
Ay(ug,u) =1 ¥ (3.34)

O ; szu(uz)Q:JM(ul)
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Defining
2 @
_ Ri,(k; Tz)Rﬁ(k; )
L,-Zp%£¢m L @)
we find

Gy, 1y, ) = ; J1sTaAr s (us, u)Ty

- Ry s(ra)BY 5 (ry)
t 2 LT B

The integration over k in (3.35) can be performed
by residues, just as in the Klein-Gordon case.
In fact, when we write out the integral (3.35) using
the explicit expressions (3.23) for the radial functions
R{,;(k; r), we find that the integrand is identical to
the integrand of (2.19) excepting only that the
parameter v is defined differently. The evaluation
of J;, is the same, step by step, as the evaluation
of J; given in See. II for the Klein—Gordon case,
and the final expression for J;, is the same as for J,
except that v is defined as in (3.24). As in the
Klein—Gordon case, we find that the contribution
to the first sum of (3.36) coming from the poles
of the Gamma function T'(1 + v — ) exactly
cancels the contribution to G; coming from the sum
on bound states. Thus G, equals the contribution
to the first sum of (3.36) coming from the pole
at E = ho:

Gi(ta, 1, w) = (Zikrlrz)—l
X 2T+ v = D)Wy pay(—2ikr;)
I

TAs(us, )T (3.36)

X mir;1+§(_2ikrl)T2AlJ(u2’ u,)Th,
>, k= ((w/c)z - (mc/h)z)i) Im (k) >0,

v = (bw/kc), v is defined by (3.24).
We find the following simple explicit expressions
for the angular functions A;,(u,, u,)*:

Az, uy) = @m)' [ + 1P,

— 46wy Xu)Py], 1=0,1,2, -+,
Ay(ug, wy) = @) '[P,

+ 6, Xu)P], 1=1,2,3, ---.

(3.37)

(3.38a)

Gr in the Furry Approximation

The parameter a enters (3.37) only through «
and through ¢ = tanh™ a/(J + %) forl = J — },
# From (3.34) and (3.28) we obtain by direct calculation

1+3
20+ 1
@+ ym )P;.

+J

t
Z Quu(uz)ﬂuu(ux) =
Jali-§l M==J
Applying the projection operator (21 + 1)1 (1 +1 + ¢+ L;) or
(20 4+ 1) (I — ¢ * L2) to both sides of this relation then
leads to (3.38a) or (3.38b), respectively.

(3.38b)
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and ¢ = —tanh™ a/(J + %) for I = J + }. The
expressions (3.24) for v can be written y = —1 +
W+ HA - /U + P forl =J — §, and.
y=U+HA—-d/J + PP lorl=J + 4
From these expressions for ¢ and v it is apparent
that the Taylor expansion of the (IJ)th partial wave
of (3.37) in ascending powers of a is, at the same
time, effectively an expansion in powers of the
parameter a/(J 4+ 1). Now the Taylor expansion
of G; in powers of a coincides with the perturbation
expansion discussed before. This is the justification
of the statement made earlier: that the perturbation
expansion of Gr in powers of @ obtained by treating
the term (a® + fae-u,)/r? in the differential equation
of the Green’s function as a small perturbation
coincides, term by term, with the expansion of G,
obtained by working with the partial-wave series
for G; and expanding the (IJ)th partial wave in
powers of the parameter a/(J -+ %). In particular,
the same expression (3.16) for G; as before must
result by expanding the (IJ)th partial wave of (3.37)
in powers of a/(J + 3), keeping only the constant
and linear terms (Furry approximation), and sum-
ming the resulting series. We will here rederive
(3.16) using this method. We find that the sum for
the spin-correction term of (3.16) can be obtained
in closed form by the same method as the sum for
the main term Gy—by using the integral representa-
tion (1.9) for a product of two Whittaker functions
with different arguments.

In the Furry approximation we can make the
replacements

YR,
W{a/wn, J=1+1%
—a/l, J=1—3

From (3.37) and (8.31) we find for the first two
terms in the expansion in powers of a/(J + 3)

(3.39)

91(1'2, 1‘1, w) ~ (21,707‘1"'2)—1 Z P(l + l —_ 1:1/)
i=1
X Wn;1+}(‘“2'ik7'2)fmn:z+;("2ikrl)
X (A3, wy) — (la/2Deu,A4-4(u,, u,)
— Ayy(u,, wy)(a/2Da u,]
+ (27:]07‘17'2)_1 i I‘(l + l - 'I:V)
=0
X W.";z+;("'27:k7'2)mn;z+§(—2ik7’1)[Au+}(uz; u,)
+ (@a/2(1 + 1))e-uzAsr.y(u,, uy)
+ AU, u)(@a/2(0 + 1a-u,]. (3.40)

We write the l = 0 term of the second sum separately
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and then combine the remaining terms of the second
sum with corresponding terms of the first sum.
Using the relations

Arrag(ug, wy) 4 Ay, uy)
= [l + 1)/4x]-Py,
(0 4+ D7 Ay, ) — 7 AU, uy)
= —Pis-(u, X u,)[@] + 1)/4x1(1 + 1)],
which may be obtained from (3.38s, b), find
G(ty, 1y, w) & (Brikrirs) 'T(L — W)W, 4(—2ikr,)
X My 4(—2ikry) (1 + (Ga/2ea-(u, + wy)]

(3.41)

+ Baikrirs)™ D T + 1 — )Wy 0aq(—20krs)
l=1

X Miyorag (—20kr)@L + D[P, — ia{P./210 + 1)}
X ferustd-(u, X u,) + 26-(u, X u)e-wy}]. (3.42)
This expression can be simplified using the identity
atytd- (U X u,) + 76-(u;, X ue-u;
= (1 — cos fa-(u, + u,).
Using the further identities (1.12) and*’
P@)-(1 — /10 + 1)
= (=) Fy(~1, 1+ 1,251 +2))
1=1,23,: -, (3.43)
we can then include the separate term of (3.42)
in the sum over I:

Silen, T, ) A @il 3 21+ (1)

X r(l + Z — ?:V)W,-,;H%(—Qikfz)mg,;“}(-—22761‘1)
X LF (=1, 1+ 1, 1; cos® £6) + (a/2a-{u, + u,)
X JFi(=1, 14+ 1,2;co8" 36)]. (3.44)

The first term in the bracket here is seen to produce
precisely the series for our approximate Klein—~
Gordon Green’s function G, [Eq. (2.30) with vy — [,
or Eq. (1.4) with k and » defined as in (2.5)]. Separat-
ing out this term and applying the integral rep-
resentation (1.9), find

gl’(rﬂ: Iy, w) = Ge(fzy Iy, C")
+ [a/167i(ryrs) e, + w)e " (sinh m) ™"

4 Equation (3.43) can be verified by direct calculation,
working with the power-series expansions of both sides of the
equation in powers of (1 + z). In obtaining the expansion of
the left-hand side of the equation, Rodrigues’s formuls for
the Legendre function is found to be a convenient starting
point.
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(14}
X [ . dr(g. + 1)£v—§(§. — 1)-:‘;-—}@;;(,‘".){

vim,are ({x1)md

X 3@+ (=1 Fo~1, T + 1, 2; cos® 30)
I1=0
X 12;“(—2?35(?'1?'2)*({ ? - 1)1})- (3.45}

As before, the use of the integral representation
has led to a special case of the Neumann’s series
(1.11). By (1.11), the sum of the series in (3.45) is
found to be

(cos 38) ' T,(—2ik cos 26(rr )} (e — DY)

Substituting into (3.45), the final integration is
seen to be essentially identical with the integral
(1.14) encountered in connection with the non-
relativistic problem. Thus we find the following
closed-form expression for G; in the Furry approxi-
mation:

Gilrs, 11, @) & Golty, T,y )
+ a(drkayorn) tes (U, + u,)I(1 —"L'V)
X Wi, i3(— ko), 3(—tkay) (3.46)
@ =141+ Irz - rl]: k= (("-’/c)z - (mc/k)z)if
o =r+n—In—n), ImkE>0, »=Dbuke.

Although this has only been proved for r, > ry,
it is valid for general values of r, and r,. This
follows from the symmetry property (3.3) satisfied
by Gr.** One can check by direct calculation®® that
this expression for Gy is the same as the expression
(3.16) obtained before using perturbation theory.

Properties of the Exact Green’s Function G,
Using the identity

-, a'y = uz‘ul + ’56'(112 X u;), (3.47)

we can rewrite (3.38a, b) in the form*®

4 Since T in (3.8) is independent of q, it follows that the
Taylor expansion of G in powers of ¢ must satisfy the sym-
metry property (3.3), term by term. In particular, the
Furry approximation {since it consists in the first two terms
of this Taylor expansion) must have this symmetry property.
The validity of (3.46) for general values of r, and r, now
follows from the fact that the right-hand side of (3.46) is
actually invariant under the symmetry operation (3.3).
[Equation (3.46) is also invariant under interchange of r, and
r; alone—without taking the transpose and multiplying on
the left and right by 7. This is a property not enjoyed by
the exact Green's function g;.]

42 For example, by carrying out the differentiations in
(3.16) and comparing with (3.46); in doing this, the differ-
ential equation [Ref. 14, p. 10, Eq. (2)]

o + (=1 + k2 + (1 — 45/4D10@) = 0,

satisfied by the Whittaker functions Wy, 3, (2) and My, 4, (2),
is required.

4 The occurrence of the same coefficients 4 and B in
connection with both angular functions Ay.3s follows quite
nicely from (3.29) (and the reality of 4 and é).
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AJ+;J(U2, 111) = A + Ba‘ug a-l,,
AJ—*J(“Z; u,) = B + Aeu; a-uy, (3.48)
A= _(47")-1P1—i7 B = +(47")_1PJ+;-

After forming T.A;,(u; u,)T; using (3.48) and
(3.31) and multiplying out, we find only terms
proportional to 1, e-(u, + u,), and e-u,a-u,. By
(3.37), G; itself is a linear combination of terms
of this form. Using (3.47) again, it follows that
G, can also be expressed as a linear combination
of 1, e+ (u, + u,), and é-(u, X uy):

Gt 11, 0) = U + Ve-(u, +u,)
+ Wé-(u, X u,). (3.49)

Although (3.49) has been obtained only for r, > 7y,
using the symmetry property (3.3) it can be shown
that (3.49) holds for general values of r, and r,.
At the same time we find that U, V, and W are
symmetric; U(r,, r,) = U(ry, ;) and similarly for
V and W. The functions U(r,, 1), V(rs, 1,), W(rs, 1,)
(since they depend on r, and r, only through the
quantities r,, r,, cos 8) are rotationally invariant.
Equation (3.49) exhibits the general structure of
the Green’s function G;, especially as regards its
v dependence.

Substituting (3.49) into the differential equation
(3.9) for the Green’s function leads to a system
of three coupled equations for the scalar functions
U, V, W. Two equations of this system are vector
equations, but when the rotational invariance and
symmetry of the functions U, V, W are taken into
account, the vector equations each lead to only one
independent scalar equation. We obtain the following
pair of equations for U and V:

DU + Ga/rp)(1 + u,-u)V = 8@, — 1)),
®2V + ('la/'rg)(]. + u, 'U2)_1U = 0,

2 2’01’ 2
:oz=(vz+-rz—+k2+“r—§)-

(3.50)

The scalar function W can be determined quite
simply once V is known [see the identities (3.52)].
G, satisfies the identity

0 b 1
I:v <‘f 2t i) + Vo + %QJSI(&: I, ©)

of W b . =
(3.51)

For the special case that b = a = Ze*/4xhe, (3.51)
becomes just the statement of the equivalence of
the two representations (3.5a, b) of the Dirac
Green’s function. The proof of (3.51) for general
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values of a and b can be based on the partial-wave
expansion (3.37) of Gr. This proof, however, involves
a great deal of algebra. In an Appendix we indicate
the main points in the proof.

When we use (3.51) in conjunction with (3.49),
a number of identities satisfied by the functions
U, V, and W are obtained. These are

(a/ry — a/r)U + iV, — V)V =0,
(@wb/ca) + a/r, + a/r)V + iV, + V)U
— (V= V)XW =0,
(a/ra — a/r)W — (V, + V1) xV = 0,
(V: + V)-W =0,

where V = V(u, + u,) and W = W(u, xu,).

One might use these identities, for example, to
solve for U and W in terms of V, whereby all our
ignorance about G; is put into the single scalar
function V. When we do this a rather interesting
expression results for G;:

Gy, 11, @) = (a/r, — a/rl)ul[(a/rz — ia-Vy)eV

(3:52)

«—
— a'V(—ie-V, + a/r)],
V="V, +u).

—
(The operator V, here does not act on the factor
(a/r; — a/ry)”"! outside the parentheses.) Note that
the second term of (3.53) is obtained from the first
upon symmetrizing in the sense of (3.3). The first of
the identities (3.52) can be used to eliminate U
from the second of the equations (3.50). In this
way a differential equation for the scalar function
V is obtained:

(3.53)

2 2k 2 a_2
(vi+ 24w gy
N W, +u)-(V, — V)V =
re (rn — )1 4+ u,ou,) = 0. (3.54)

This equation involves V, as well as V,. However,
consideration of rotational invariance and symmetry
shows that V may be expressed in terms of three
functionally independent and symmetric combina-
tions of 7y, 7y, cos 8, and then V, and V, can both
be expressed in terms of derivatives with respect
to the same three independent variables.

IVv. COULOMB WAVEFUNCTIONS

Derivation from the Green’s Function

Considering the nonrelativistic case, the physical
retarded (advanced) Green’s funection G(r;, r,, ®)
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regarded as a function of r, can be interpreted as
the Schrédinger wavefunction corresponding to a
source (sink) point located at r, of particles of
frequency w. When %w lies in the continuous spec-
trum, we obtain the Coulomb wavefunctions with
modified plane-wave behavior at large distances
by taking the source point (or sink point) r, in-
finitely remote from the origin in a definite direction
u,. This derivation of the Coulomb wavefunctions
with modified plane-wave behavior at large distances
has been given by Meixner' working with the eigen-
function expansion (in parabolic coordinates) of
the Green’s function. The same result can also be
obtained from our closed-form expression (1.18) for
the Green’s function. Using the formula (2.27) for
the asymptotic behavior of the Whittaker function
Wi.3u(2), we obtain the following expression for the
Green’s function (1.18) in the limit r, — o **:

G(Es, 11, @) ~ — (b)) e (= 24kr) " T(L — i)
X e T R (v, 1, ik(r, + 1,01,))
X [+ O@y/ry) + 0Q1/[k| r1)]

larc (—2ikr,)| < .

4.1)
T — o,

Discarding factors independent of r, gives the
desired wavefunctions in the form

o) = e 7 Fi(iv, 1, ik(ry + 1,0u,)). 4.2)

Here 7w is to be evaluated at a point E > 0 above
or below the continuous spectrum, corresponding
to a point source or sink, respectively, of particles
at infinity in the direction u,. k in (4.2) is interpreted
as the corresponding limiting value of % defined by

= (2mw/h)* and Im (k) > 0. In the former case,
k approaches +(2mE/h%)}; in the latter case k
approaches — (2mE/h*)}. In either case the expon-
ential in (4.2) gives the “asymptotic momentum”
of the particles associated with the wavefunction
(4.2). This momentum is p = —ku,. We can check
that this momentum is in agreement with our
interpretation of the wavefunction (4.2) as cor-
responding to a source or sink point of particles
at infinity in the direction u,. Indeed, when Aw is
evaluated above the continuous spectrum, & is
positive and p is in the direction —u, corresponding
to particles coming in from the point r, at infinity.
On the other hand, when kw is evaluated below

4 In deriving (4.1), we also require the identity

M, 3@ + 3,40 = et Fi(iv, 1, —2).

This identity may be obtained by combining Egs. (38b) (with
the lower sign) and (39b) in Ref. 14, p. 81, and using the
defining equation (1.5) of the Whittaker function Mx; 3 (2).
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the continuous spectrum, & is negative and p is in
the direction +u,, corresponding to particle motion
toward the point r, at infinity.

A similar construction of the relativistic Coulomb
continuum states as a limiting case of the physical
Green’s function is possible. We here find four
types of wavefunctions corresponding to allowing
w approach the positive or negative frequency
continuous spectrum from above or below. For
negative w the charge conjugate of the wavefunction
obtained is interpreted as the ordinary Schrodinger
wavefunction of the antiparticle. In considering the
Dirac problem or the iterated Dirac problem, there
is an additional complication due to spin. The
Green’s funetion is now a 4 by 4 matrix and ‘cannot
be interpreted directly as a wavefunction. However,
multiplication on the right by an arbitrary constant
spinor ® converts the physical Green’s function
into a spinor field satisfying an inhomogeneous
Schrodinger equation with source term 6°(r, — r,)®.
This spinor field can be interpreted as the Schrod-
inger wavefunction generated by the point source
(sink) &°(r, — r,)® located at the point r,. The
Coulomb wavefunctions with modified plane-wave
behavior at large distances due to a point source
(sink) proportional to ® at infinity in a definite
direction u, are then obtained from this spinor field
by looking at the asymptotic behavior asr, > .

Applying this method to the Green’s function
of the iterated Dirac equation, we are lead to seek

" the asymptotic behavior as r, — « of the spinor

field G4(r,, r;, w)®. This is the same as the asymptotic
behavior, as r; — «, of TG,(1, 2)T computed using
(3.37) with r, and r, interchanged and with b =
a = Zé’/4rhc. We find the desired wavefunctions
in the form

(1) = 01z, uy, )P, & arbitrary, 4.3)
and
Ory, Uy, w) = — > D1 + v — @)(—4kr,)”"
iJ
>< mi viy +§(_ 217{”‘2)7"21&! J(uZ) ul)Tl . (4 ‘4)

Here w is to be evaluated at a point above or below
the positive or negative frequency continuous
spectrum. k is interpreted as the limiting value
approached by the quantity &£ = ((w/c)* — (me/h)*)?,
Im (k) > 0. The same expressions (4.3), (4.4) for
the wavefunection(s) could also be obtained without
reference to the Green’s function, as follows. ¢(r,)
could be expanded in a series of the stationary-state
solutions Sx;% 4 (k; r2) to the same frequency of the
iterated Dirac equation, with the expansion co-
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efficients choosen to correspond to an incoming or
outgoing modified plane wave at large distances.

We can write the actual physical energy of the
particle or antiparticle associated with the state
(4.3) in the form

E = ¢ho. 4.5)

Here, as before, the quantum number p = 1, 2
distinguishes between positive and negative fre-
quency states. ¢, = +1for p = 1 and ¢, = —1
for p = 2. When 5w approaches the continuous
spectrum from above, the wavefunetion obtained
describes a particle or antiparticle coming in from
the source point r, at infinity in the direction u,.
Hence the actual physical particle or antiparticle
“asymptotic’” momentum p is in the direction

—u,;: p = —h |k] u,. Now above the continuous
spectrum k = ¢, |k|, so the relation
P= ;‘Gphkul (4-6)

holds for either positive or negative frequencies.
When 7w approaches the continuous spectrum from
below, the wavefunction obtained describes a
particle or antiparticle destined to be absorbed at
the point r, at infinity in the direction u,. In this
case the asymptotic momentum of the particle or
antiparticle is in the direction +u,:p = +% [k| u,.
But below the continuous spectrum k = —e, |k,
whence p = —e¢hiku; as before. Thus (4.6) holds
for positive or negative frequencies and above or
below the continuous spectrum.

Just as for the Green’s function, © has the general
form

o(r;, v, w) = ¥ + va-(u; + u,)

+ wé-(u; X wy). @7
This can be regarded as a consequence of the general
structure (3.49) of the Green’s function, obtained
from (3.49) by looking at the asymptotic behavior
as r, — ».*® Looking at the asymptotic behavior as

r, — o of (3.51) (with b = a = Zeé*/4rhc), we
deduce the identity

[,YO<Q + ‘l) + iV, + z“’—:l(‘)(r,, u;, )
T h

(A
= @(l'g, u,, w) Eﬁ__ﬁl——ﬂc ) (4-8)

» = y(E/c) — v-p.
Here E and p are as defined in (4.5) and (4.6).
4 It also, of course, follows immediately from the series

expansion (4.4) by the same observation which originally
led to (3.49).
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The identity (4.8) could also be established directly,
working from the series expansion (4.4) of ©. This
derivation would be similar in detail to the derivation
of (3.51) outlined in the Appendix. Again, using
(4.8) in conjunction with (4.7) leads to a number
of identities satisfied by the functions u, », and w.
They may be obtained from the corresponding
identities (3.52) by making the replacements U — u,
Vo9 W-—w V, > —iep/h and of course
b = a = Zé*/4Arhe. '

When we apply the foregoing method to the
Dirac wavefunction we find an easy derivation of
a result previously obtained by Johnson and Deck'':
that the exact Dirac Coulomb continuum state
with modified plane-wave behavior at large distances
has the form*® '

PO = {u. +vie-u, Fu,)
+ wtd'(ur X uﬂ)} Up(p), (49)

where U*’(p) is the Dirac free-particle plane-wave
spinor associated with the asymptotic expression
for ¥*(r). We multiply Eqs. (3.5) on the right by
an arbitrary constant spinor #, and seek the asymp-
totic behavior as r, — . This leads to the Dirac
wavefunction ¢(r) in the form

Y1) = I:')'(’(E:' + TL:) + ¢V, + r%w] o(r,, u,, w)d
(4.104)
= O(ny, uy, «) 2T ; me &, (4.10b)

Here the notation is the same as in connection with
the wavefunetion of the iterated Dirac equation.
We have here the identity (4.8) again, but multiplied
on the right by an arbitrary constant spinor &.
The result of Johnson and Deck is contained in
(4.10b). The factor (¢,p + mc)/h is proportional
to the Dirac free-particle positive or negative
frequency projection operator, and adjusts the
arbitrary constant spinor ® to a Dirac positive or
negative frequency plane-wave spinor according
as the Coulomb wavefunction' ¥(r,) belongs to
positive or negative frequency. Two degrees of
freedom in the arbitrary constant spinor & are in
effect projected out. We can replace (p + me)d
with @ arbitrary by simply U’(p) where U’(p) is
a general Dirac positive frequency plane-wave
spinor, and similarly for (—p + mc)®. Thus (4.10b)
can be written

lﬁ(l'g) = 0(1'2, u,, w)Up(p)' (411)

46 The superscripts = in y*(r) refer to incoming/outgoing
modified plane-wave behavior at large distances.
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The result (4.9) of Johnson and Deck now follows
by observing that ©(r,, u;, ) has the general
structure (4.7) and that u, = TFu, according as
we consider incoming/outgoing wave boundary con-
ditions at large distances. From the point of view
of the Green’s funection, the result (4.9) of Johnson
and Deck is seen to have a very simple explanation:
it is a consequence of the representation (3.5b) of
the Dirac Green’s function and of the general
structure (3.49) of the Green’s function of the
iterated Dirae equation.

Use of the Neumann’s Series in Connection with
the Wavefunction®’

The Neumann’s series (1.11), by which we were
able to sum the series for the Green’s funection,
can also be used to sum the partial-wave expansions
for the Coulomb wavefunctions with modified
plane-wave behavior at large distances, exactly in
the nonrelativistic case and in the Furry approxima-
tion in the Klein—-Gordon and Dirac cases. To
accomplish this, we require the integral representa-
tion*®

o'k + 31 + )P M 4,(0)
= [ a2, 00

Re (k + 31 + ) > 0, 4.12)

expressing the Whittaker function 9, ;.(a) as an
integral involving a Bessel function. The derivation
of Gordon’ for the nonrelativistic case has been
redone in this way. Here we will outline the deriva-
tion by this method of the Furry wavefunction.

The result follows quite nicely from the rep-
resentation (4.11) of the Dirac wavefunction. We
obtain 0(r;, u,, w) in the Furry approximation from
the expansion (4.4) by making the substitution
(3.39) and the substitution

TaA (02, u))T) = [As(us, wy) + @GE¢)eu,
X Aus(ug, wy) + AU, u)(@Yaeu,].

The resulting expression for ¢(r;) can be simplified
exactly as in the case of the Green’s funetion,
by combining the two angular momentum sums
and using the explicit expressions (3.38a, b) for the
angular sums. We find

V)~ 3 @+ D/~ DI + - )

X (_"2179"'2)_1571; v ;1+;(_ 2ikr,)

47 See also B. Rosen, J. Math. Phys. 4, 392 (1963). .

18 Ref. 14, p. 14, Eqb (13a). The angle arc(a) may be
arbitrary, but it must be the same on both sides of the
equation.
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X [ZFI('—Z; l + 1; 1: 0032 -]2‘9)
+ 2F1(—l) l+1, 2; cos’ %0)
X (ia/2)e(u; + u)]UP). 4.13)

If in the Neumann’s series (1.11) we replace k by

¢ and z by 2(az)*¢ ***, multiply through by e *z*"},

and integrate on z from 0 to «, then we obtain
by (4.12)*
aiu+p>ea§<1-a')smk+iu_v) ;h(aqz)
N 3
BCCANP N s =i e i
X@+wF(-lLp+lLr+1;¢)
X Miyeism(@; pv# —1, =2, .-+ . (4.14)

The sums oceurring in (4.13) are just special cases
of the general formula (4.14). After summing these
series, we obtain
Y(t;) & —T(1 — @){@dx) e ™
X Py, 1; ik(r, + 1,-1,)) U (p)
— Tl — w)@dx) e ™
X Fi@v + 1, 2; ik(r; + 17u1y))
X (ia/2)e-(u, + u,)U’(p).
[Here we have used (1.5).] Now using the identity®
d/dz \F.(a, b, z) .
= (a/b) \Fila + 1, b + 1;2), (4.16)

the Furry or Sommerfeld-Maue wavefunction
results:

YI) &~ —@rn)'TA — @) 1 — @R/ 2w)e Vs ]
X Flily, 1; ik(rs + 1,u)) U (D). 4.17)

Note that both positive and negative frequency
states and both incoming and outgoing wave
boundary conditions are contained in the single
expression (4.17).

The Furry wavefunction can also be derived from
our approximate Dirac Green’s function as obtained
from (3.5b) by looking at the asymptotic behavior
as r, — o, The expression for this approximate
Green’s function is

(4.15)

0

K(t,, 11, w) & [Gy(ts, 11, w)
— (ic/2w)a- (V3 + V )Go(rs, 13, )]
X /e + a/r) — -V, + me/h),  (4.18)

where G, is the Green’s function of the Klein—Gordon
equation without the potential squared term. The

© Ref. 14, p. 130, Eq. (16).
80 Ref. 14, p. 5, Eq. (10).
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asymptotic behavior as r, — « of G, is given by
Eq. (4.1), but with % and » defined as in (2.5).
Using (4.1), we find the asymptotic expansion of
(4.18), and multiply on the right by an arbitrary
constant spinor ®. This gives the approximate
Dirac wavefunction

Yr,) &~ [1 — (ic/2w)a-(V, + iku,)]e =™

X 1Fy(tv, 1; ik(ry + 1,0u)))(e, + me)/h-®. (4.19)

Here E, p, and p are as defined previously [Eqgs.
(4.5), (4.6), and (4.8)]. As before, (p + mc)/h-®
here with & arbitrary can be replaced by simply
U*(p) where U’(p) is a general positive frequency
free-particle Dirac plane-wave spinor, and similarly
for (—p + mc)/h-®. Also, by using the operator
identity

(Vz + '57(7111)3——%“.“1 = e_‘k“.u‘vm

the exponential factor in (4.19) can be moved to
the left. Making these changes, we find the Furry
or Sommerfeld-Maue wavefunction (4.17) again.

(4.20)
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APPENDIX

Here we will indicate the main points in the
proof of the identity (3.51) for general values of
b and a. G, is written in the form

G2, 1) = 0(ry — 1)G(2, 1) 4 6(r; — )G:(2, 1),
6z)y = +1, 2> 0; 8x) =0, = <O0.

The function G,(2, 1) is defined for r, < r, as well
as for r, > r, by the series (3.37). 6,(2, 1) is obtained
from G,(2, 1) by application of the symmetry
operation (3.3): G,(2, 1) = TG,(1, 2)T. The problem
can be reduced to showing that G,(2, 1) satisfies
(3.51). To show that G,(2, 1) satisfies (3.51) we
write out (3.37) as two sums on J, one sum con-
taining the [ = J — % terms and the other the
l = J 4 % terms. The ¢ and v values belonging
to these two types of terms are expressed in terms
of the same parameters n = tanh™ (a/(J + %))
and r = ((J + 2)* — a®? respectively. The rep-
resentation (3.48) of the angular functions is used.
Also the relations cosh® iy = 1 + (J -+
sinh® iy = —% + (J + 1)/2r, and sinh
cosh 1y = a/27 are used. There results

3n X

)/27,.
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G(2,1) = D 2krs) "I+ 7 — W)W, 0y (—2ikery)

X My ;ray(—20kr)[P + DJ + 3)/7 — (Ga/7)
X Pa*(u, +uy) + (P — D(J + 3)/7)e-ue-u,]
+ 3 @ikryy) ' T(r — W)Wy, y(—2ikry)

X Ny, rmy(—21kry)- [P — D(J + 3)/7 + (Ga/7)
X Pe(u;, +uy) + (P 4+ D(J + 3)/7e-ue-u,];

P =34+ B), D=3A4A— B). 1)
We transform év-V, as follows:
-V, = 2]070&-“2[6/6.22 + 1/22 - Kz/zzly @)

2, = —2ikr,, K, = (¢-L, + 1).

The derivative /92, of (1) is evaluated using
the identities®

(2 + YW = (-1 +52)

632 2y 22 2722
X Wiv:r+%(22) - 72_:21” Wiv;r—b(:zz)y
: 6))
I A _ (1 _ W )
(6z2 + z2>22 Wisie-i(ea) = vz
¥y —
X Wiv:'r—l}(zZ) - 2722 W:‘v;‘r+}(z2)'

To evaluate K,G, we go back to (3.37). K, is anti-
commuted through the e-u, of T, and the fact
that the angular functions A;,(u; u,) are eigen-
functions of K, is used. The resulting expression
can then be put into the form

— (Y fro)e 1K ,Gu(2, 1)
= (’70/7’2)(7'132)_1 ; P(l + 7 - iV)W.'u;H;m.-,;H;

X [aD(J + 3)/7 — aDeweu,(J + 3/
— te:(u, + u)P(=* + a¥)/r
— da-(u; — u)rD(J + 3)/7)
+ & /r)re) " 20 D — )Wy My

7
X [—aD(J + 3)/7 + aDa-vye-u,(J + )/
+ de- (s + w)(7" + )P/7
— der(w, — u)r D + /e @
When (4) is added to the expression obtained for

51 Ref. 14, p. 82, Eq. (42a).
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2k’ uy(8/92, + 1/25) Go(2, 1), there results

(‘Yoa/rz + iy V2)6:(2, 1)
= Y, —2ky°(—2ikr,) ' T(r — W)WMy, ,0a3(21)

X (1 — @)-[(/20)W iy ra3(22)

= W) (7 + w)/27]

X [(P + D(J + 3)/nau, + (P — DJ + 3)/7)
X e-u; — (Za/7)P(1l + e-ua-u,)]

+ ZJ) —2ky"(—2ikry) T T(r — )y, ,-4(21)

X [_(iV/2T)W§y;,_¥(Z2) - Wiv;r+§(z2)'(7' - 7’”)/27]
X [P — DWJ + §)/nNev, + P + DI + 3)/7)
X a-u, + (la/7P(1 + a-ue-u,)]. (5)

The expression for (y’a/r. + ivy+V.)G:(2, 1) can
be obtained from (5) by making the replacements

Wiyirsg(ea) = — (7 + @)Msy003(22)
Wiviry(22) = Miyiroy(22)

Miyirry@r) = — (7 + 97 Warna(a)
m‘,;,_;(zl) - W;v;f—§(zl)-

(6

N
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[Making these replacements changes G.(2, 1) into
G,(2, 1), while at the same time the relations (3)
are transformed into valid relations for the func-
tions 9N, ;,+3(2:).%] If in the expression so obtained
for (y’a/ry 4+ iv-V2)Gi(2, 1), we interchange r,
and r,, take the transpose, and multiply on the left
and right by 7' = i¥°y’y', we obtain an expression
for G,(2, 1)(—iy- WV, + v°a/r,) similar to (5). When
this expression is subtracted from (5), there results

(’Yoa/ Ty + i‘\"Vz)Sz(Z, 1)
— 82, D(—iv- Vs + va/r) = 2% z @ik

X 'YOF(]» + 7 — iV)Wiw;r+§(zz)miv:1+}(zl)

X (@v/7)Pa-(u, + u,)

— 2k 2 Qikrya) Y T(r — @)W eyirmy(e)
7

X m;v;r—§(21)(iV/T)Pa‘(u2 + uy). @

But by (1), the right-hand side of (7) is just
(w/c)-(b/a)-[82(2, 1)¥° — ~°Gx(2, 1)], whence it

follows that G,(2, 1) satisfies (3.51).

52 Ref. 14, p. 82, Eq. (42b).
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In a recent paper Zabusky has given an accurate estimate of the time interval in which solutions
of the nonlinear string equation y:: = ¢¥(1 + ey )y« exist. A previous numerical study of solutions
of this equation disclosed an anomaly in the partition of energy among the various modes; Zabusky’s
estimate shows that at the time when the anomaly was observed the solution does not exist. The
proof of Zabusky uses the hodograph method; in this note we give a much simpler derivation of
the same result based on an estimate given some years ago by the author.

1. PRELIMINARY LEMMAS ABOUT ORDINARY
DIFFERENTIAL EQUATIONS

UR estimates are based on two simple and
well-known results concerning solutions of
quadratic ordinary differential equations:
Theorem 1. Let z(t) be the solution of the initial-
value problem

dz/dt = a()e®, 2(0) = m (1.1)

in the interval (0, T). Suppose that the function a(t)

satisfies the inequality
0 < A <a(®), 0L:t<T,

and suppose that m is posttive; then
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2k’ uy(8/92, + 1/25) Go(2, 1), there results

(‘Yoa/rz + iy V2)6:(2, 1)
= Y, —2ky°(—2ikr,) ' T(r — W)WMy, ,0a3(21)

X (1 — @)-[(/20)W iy ra3(22)

= W) (7 + w)/27]

X [(P + D(J + 3)/nau, + (P — DJ + 3)/7)
X e-u; — (Za/7)P(1l + e-ua-u,)]

+ ZJ) —2ky"(—2ikry) T T(r — )y, ,-4(21)

X [_(iV/2T)W§y;,_¥(Z2) - Wiv;r+§(z2)'(7' - 7’”)/27]
X [P — DWJ + §)/nNev, + P + DI + 3)/7)
X a-u, + (la/7P(1 + a-ue-u,)]. (5)

The expression for (y’a/r. + ivy+V.)G:(2, 1) can
be obtained from (5) by making the replacements

Wiyirsg(ea) = — (7 + @)Msy003(22)
Wiviry(22) = Miyiroy(22)

Miyirry@r) = — (7 + 97 Warna(a)
m‘,;,_;(zl) - W;v;f—§(zl)-

(6

N
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[Making these replacements changes G.(2, 1) into
G,(2, 1), while at the same time the relations (3)
are transformed into valid relations for the func-
tions 9N, ;,+3(2:).%] If in the expression so obtained
for (y’a/ry 4+ iv-V2)Gi(2, 1), we interchange r,
and r,, take the transpose, and multiply on the left
and right by 7' = i¥°y’y', we obtain an expression
for G,(2, 1)(—iy- WV, + v°a/r,) similar to (5). When
this expression is subtracted from (5), there results

(’Yoa/ Ty + i‘\"Vz)Sz(Z, 1)
— 82, D(—iv- Vs + va/r) = 2% z @ik

X 'YOF(]» + 7 — iV)Wiw;r+§(zz)miv:1+}(zl)

X (@v/7)Pa-(u, + u,)

— 2k 2 Qikrya) Y T(r — @)W eyirmy(e)
7

X m;v;r—§(21)(iV/T)Pa‘(u2 + uy). @

But by (1), the right-hand side of (7) is just
(w/c)-(b/a)-[82(2, 1)¥° — ~°Gx(2, 1)], whence it

follows that G,(2, 1) satisfies (3.51).
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then the initial value problem (1) has a solution for
|| < |mB|™.

Proof: Let 2,(t) be the solution of the comparison

equation
dz,/dt = Az,

Since A is a lower bound for a(f), it follows easily
that z,(¢) is a lower bound for z(¢) for all positive
t. Since 2o = m/(1 — mAt) —» « at ¢t = (md)™},
it follows that 2(f) cannot exist beyond this time.

The proof of Theorem 2 is similar: we note that
the solution 2z, of -

is an upper bound for [2(¢)| for all positive 2.
2, QUASILINEAR SYSTEMS FOR TWO UNKNOWNS

2,(0) = m.

The following estimates were derived in Ref. 1.
Consider a system of two first-order partial
differential equations:

U, + au, + by, = 0,
v¢+cuz+dvz=0;

a, b, ¢, d being functions of u and v. Suppose that
this system is hyperbolic, i.e., that the matrix

cd
has real and distinct eigenvalues N and u for all
relevant values of ¥ and ».
Let (I, ;) be the left eigenvector of the above
matrix corresponding to the eigenvalue A. Multiply

the first equation in (2.1) by [,, the second by I,
and add; we obtain the characteristic equation

lw + Ly =0,

2.1)

2.2)
where
! = g/at + N9/dx).

Let ¢ be an integrating factor for (2.2), ie., a
function ¢ of » and v such that ¢/, and ¢!, become
the u and v derivatives, respectively, of some func-
tion r(u, v). Multiply (2.2) by ¢; we get

v =71 4+ N\, = 0. 2.3
For the other eigenvalue we get a similar equation
=0, 2.4)

where
‘= 98/9t + u(8/9x). 2.5)

The funections r and s are called Riemann invariants;
Egs. (2.3) and (2.4) express the fact that they

1 Unpublished note.

D. LAX

remain constant along their respective charae-
teristics.
Differentiate (2.3) with respect to z:

Tio + Mo + A2+ A7, = 0. (2.6)
From (2.4) and (2.5) we have
0=3=5 — (- ws,
80
8, =8/(\ — u). 2.7)

Substitute (2.7) into (2.6) and abbreviate r, by w;
we get

w 4+ Mo’ + N/ — wls'w = 0. 2.8)
Denote by & a function of r and s which satisfies

he = N/(N— ).

Using (2.3) we have
B = ha' 4 ks’ = [N/ — WS’
Substituting this into (2.8) gives
w 4+ Mw' + hw = 0.

Multiplying by ¢* and abbreviating ¢*w by z gives

2 e\ =0, 2.9
an equation of the form (1.1), with

a = —e"\,.

We make now the additional assumption that
A, ts nonzero for the relevant values of r and s;
this amounts to requiring that the system (2.1) is
genuinely nonlinear.

Consider bounded initial values for r and s;
since r and s are constant along characteristics, it
follows that r and s stay between the same bounds
for all time. The quantity |[\,e”*| has then a lower
bound A for the relevant values of r and s. Suppose
that A, is negative, and denote by m the maximum
of the initial value of z. Then, according to Theorem
1, solutions with such initial values cannot exist
beyond ¢ = (Am)~".

Denote by B the supremum of [A,e™*|, and by
m the maximum of |2|. According to the proof of
Theorem 2 we can place an a. prior: limitation on
lz] valid for all values of ¢ less than (Bm)™*; this
gives an a priort estimate for |r.]. We can get a
similar estimate for |s,| in a similar time interval.
According to the theory of first-order quasilinear
hyperbolic equations’, solutions to initial-value

2 R. Courant and D. Hilbert, Methods of Mathematical

Physics (Interscience Publishers, Inc,, New York, 1962),
Vol. 11, Chap. V.
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problems exist as long as one can place an a prior:
limitation on the magnitude of their first derivatives.

To summarize: Using theorems 1 and 2 we can
place upper and lower bounds on the time interval in
which the solution of a given initial-value problem
for (2.1) exists.

For arbitrary initial values, these bounds are far
from sharp. There is, however, one case in which
these bounds are asymptotically correct; when the
initial values differ little from a constant r,, s,.
It follows then that r and s are nearly constant
for all time, and so we have the following bounds:

e ON0) — e < e\, < eMIN(0) + e
(" — ¢ max r,(0) < max 2(0)
< [” + €] max r,(0),

where a(0) denotes the value of a(r, s) at ro, $,,
and 7.(0) the initial value of r.. So according to
Theorems 1 and 2, the time T..;, beyond which
a solution cannot be continued is given asymp-
totically by the smaller of the two numbers

[~N(0) max r,(0)] 7", [—u.(0) maxs.(0)]7'. (2.10)

(Here the sign of r and s is so chosen that A, and
#, are both negative.

It would be interesting and useful to derive such
estimates for solutions of systems of equations for
more than two variables.

3. NONLINEAR SECOND-ORDER HYPERBOLIC
EQUATIONS

In this section we shall rederive the result of
Zabusky® about the equation studied by Fermi,
Pasta and Ulam.*

We shall apply now the foregoing theory to the
second-order equation

Yie = Kz(y:)yu- (31)

We preseribe initial values in the interval (0, L):
¥z, 0) = %(@), y.,0 =0, 0<z<L
At the end points we require y to be fixed:
y(0, t) = y(L, t) = 0.

This mixed initial-boundary-value problem can be
converted into a pure initial-value problem by
extending y, to be an odd function in (—L, L)
and further extending it periodically with period 2L.

We make a first-order system out of (3.1) by
" #N. J. Zabusky, J. Math. Phys. 3, 1028 (1962).

¢+ E. Fermi, J. Pasta, and S. Ulam, “Studies of Nonlinear
Problems I, Los Alamos Sci. Lab. Rept. LA 1940 (1955).
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introducing
Y. = U,
as unknowns.,

Y =9

u, =,
v, = Ku,.

Moultiply the first equation by K and add to (subtract
from) the second. We get

v+ Ku' =0 and ¢ — Ku'* =0, 3.2)
where A\ = K, 4 = —K. Since K is a function of u
_alone, Eqs. (3.2) are exact; the Riemann invariants
are
r=v+4+ L), s=v— L),
where
dL/du = K.
To compute A, we write
r — s = 2L{u)

and differentiate it with respect to r:
1 = 2Lu, = 2Ku,.
Combining this with
x" = Kf = KM r
gives
A = K,/2K.
Differentiate r with respect to z:
7. =0, + Ly, = v, + Ku,.
Since initially » is zero and u = y,,
max 7,(0) ~ K(0) max 5(0),.. 3.4)
So, by (2.10), the time beyond which the solution
cannot be continued is
Torie =~ 2[K,(0) max y,.(0)]"". 3.5)
In Ref. 3 K is taken to be ¢(1 + ew)? and y,(z) =
a sin (rz/L). Then K,(0) = %ec; so by (3.5),
Torss = 4L caer®.
The period of vibration of the linearized system
is 2L/¢, so the critical number of vibrations is
2L/aer”.

This agrees with Eq. (5.21) of Ref. 3.

The above formula is asymptotically valid for
large values (3.6). Taking ¢ = 1, this means that
the maximum displacement a should be small
compared to the length L of the string.

In -the calculation in Ref. 4, the values chosen
correspond to: L = 1,a = 1,¢ = 1, e = 4. Formula
(3.6) indicates that breakdown occurs after
~ 13.0 cycles.

(3.3)

(3.6)
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A partial-wave amplitude is frequently subject to constraints which specify its values at a given set
of points. This happens, for instance, when we insist on its correct threshold behavior. We investigate
such constraints in this paper and derive a class of inequalities which are necessary conditions for the

existence of such an amplitude.

I. INTRODUCTION

ECENT investigations of partial-wave disper-

sion relations''? have focused attention on the
question of the existence of solutions for these
equations satisfying given boundary conditions.
Such conditions may specify the asymptotic be-
havior of the spectral functions and then lead to
theorems''” similar to the one proved by Pomer-
anchuk® in a different context. Or they may specify
the values of the amplitude at known points in
the finite complex plane. This is the case, for
example, when an amplitude for orbital angular
momentum [ is required to have an [-fold zero at
threshold. Literature on some aspects of this problem
exists"'”> and the present work may be regarded
as an extension of the results contained therein,

For pedagogical reasons, in Sec. II, we begin with
a simple situation where the amplitude has two
zeros whose positions are subject to some constraints.
Certain inequalities are derived involving moments
of the spectral function for the unphysical cut and
of the inelasticity coefficient and a formalism is
developed which expresses these inequalities in a
concise form. The distinetion between the original
dispersion relation and the N/D equation is then
utilized to obtain inequalities for bound-state
parameters.

In Sec. ITI, we consider an amplitude which has
an arbitrary but finite number of zeros, and prove
the associated inequalities. These results can be
sharpened if physical information regarding the
behavior of the phase shifts over some range of
energies can be obtained from experiment. The way
to do this is discussed next. As in Sec. II, we can
also derive inequalities for bound-state parameters.
These are seen to imply some restrictions on the

* Work supported by the U. S. Atomic Energy Commission.

1 G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963).
lishaéc?). P. Balachandran and F. N. von Hippel (to be pub-

31. Ia. Pomeranchuk, Zh. Experim. i Teor. Fiz. 34,
725 (1958) [Engl. transl.: Soviet Phys. — JETP 7, 499 (1958)].

positions of the bound-state poles. Finally, all these
results are generalized to boundary conditions which
specify the values of the amplitude at some known
points. These should prove useful particularly when
unstable particles are present in the system.

The material in these two sections refers only
to the scattering of a spin-zero by a spin-3 particle
since it presents features not shared by a spin-zero
system. The latter is treated briefly in the final
section. The scattering of particles of arbitrary spin
is not studied in this work, but it appears to involve
no serious difficulty.

In the Appendix, the algebraic properties of a
certain function are analyzed and used to simplify
our previous results somewhat. This is important
since the inequalities of Sec. III call for the know-
ledge of the zeros of a function of several real
variables and may not be suitable for numerical
work. However, these simplified inequalities do not
seem to exhaust the contents of the original ones.

II. SPIN-ZERO-SPIN-1, SCATTERING: AN EXAMPLE

Let f;. denote the partial-wave amplitude for
orbital angular momentum ! and total angular
momentum J = ! 4= {. If the center-of-mass energy
w is chosen as the complex variable, f,,(w) satisfies
the dispersion relation

Re f,.(w) = Re {’m(w) exp (2061 (w)) — 1}

2tk
_ i+ (w) sin 26, (w) _ _l_f dw’ ¢l+(w,)
= ; = ' =
Zk T Jy w —w
P % dw 1 — n.w)
+1r w 2w —w
_ _1_ _mi’w_' 1 - 77(l+1)—(_'w,)
7 Jow; 2 w — w
P [ dw | ni(w’) sin® §,,(w’)
+ T ./:,,‘ kK [ w — w

_ N - (W) 8I0* 3rayy - (w')

W + w ], w > w, (II.1)
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where 7,.(w) and §,.(w) are the transmission co-
efficients and real parts of the phase shifts for
fi:(w), w,, and w; are the scattering and inelastic
thresholds, ¢;.(w) is the spectral function for the
unphysical cut U, and k is the center-of-mass
momentum. The choice of the amplitude here (and
in Sec. III) is dictated by the desire to avoid all
kinematical singularities and is well known in the
literature. (Cf. Ref. 1.) The function ¢;.(w) will
contain & functions if there are poles in (II.1).
We are required to solve for §,,(w) and 68,1y_(w)
when ¢, (w), 7.4 (w), and 5;+y,_(w) are given and
will therefore, as far as possible, state our results
entirely in terms of these known functions. In (IL.1),
we have assumed the absence of any contribution
from the circle at infinity. In addition, in this work,
we will also assume that ¢,.(w), the 5's, the sin §’s,
and their analog for the spin-zero system do not
oscillate infinitely as w — <. These two assump-
tions seem to be intimately related and have not
been proved hitherto.

It is convenient to combine the first three integrals
and write them as

L= bel)

where V now runs over all the three cuts and
V1. (w) takes on appropriate values in the different
ranges. If

w > w,, (11.2)

= 1/ fV ' . ') (IL3)
exists, the following sum rule is true''*:
Lt 1 [ 9 ) sin? @)
+ a+n-@’) sin® §uuy-w’)] = 0.  (I1.4)

For, if it were not true, the coefficient of 1/w on
the left-hand side of (I1.1) will not vanish as w — «
along the unitarity cut, that is, n,. () = 0 and
8:.(@) # %(nw) for any integer n. But, then,
n1+() sin” 8;.(») > 0 and the last integral will
behave like In w/w for large w. Since the left-hand
side is O(1/w) for large w, this is a contradiction
and proves (I1.4).

Now suppose that f,.(w) is required to have zeros
at two points z; and z, which do not lie in either
of the intervalsw, < 2; < wand —» <z, < —w,.
The z; may of course be threshold zeros. If z, is
complex, the real analyticity of f,.(w) implies that
z, = z*. By hypothesis, the function

L) = fra)/[@ — 2)w — 2]

may have no poles at 2, and 2, and therefore,

(I1.5)
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7.+ (w) sin 25, (w)
2k H w—2)
= E‘[ dw’ ‘//t+2(w,)
T - w) [T —2)
P [”dw | _ n.@)sin® 5. w)
+2f Ealbe —
(w — w) H(’w —2;)
w>w . (IL6)

_ Masn- (’w)Sm Sy -(w)
W + w) H(w + 2)

It is easily seen that the first integral exists even
when z; falls on U. Let us now introduce a notation,
which will prove particularly useful later on, through
the definition

K@ = = f dw @)
A | (7
X JI @-w), n<2 (1L

where the product in the numerator is to be set

equal to 1if 2 — n 4+ 4 4+ 1 > 2 and the w; are

complex variables in a domain to be specified later.

The integrals h;(2) are assumed to exist, which is

true if I, does. (This restriction will be removed

at the end of Sec. III.) The left-hand side of (I1.6)
O(1/w’) for large positive w, and so

°2) + lf dw m+(w’) sin® &, (w’)
H(w - z;)

i=1

II w +2)

i=1

+ "I<t+1)—(";)’) sin® 5(l+:>—(w')j'

=h@) + 55+ 12 =
hi(2) + }rf %Zi,’_w,[n“(zzv)sm b1 (w')

H (W' — z;)

i=1

_ "I(z+1)—(7£,) sin® 8141y ()
II @ +2)

i=1

=M@ + 74 — i =0,

2(2) + lf dw W m,,(w’) sin® §,.(w")
H(w _—zl)

i=1

H (" + 2;)

J=1

+ ")(z+1)—(7£') sin’ 5<z+1)—(w')}

=mn@+i+7~ =0 (I1.8)
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The last equation is the analog of (I1.4). These sum
rules immediately lead to inequalities for the known
functions A (2). Thus,

o2) <0, R3(2) < 0. (I1.9)

The equalities A3(2) = 0, h3(2) = 0 are possible if
and only if there is no scattering and can therefore
be ignored. Also, since

ho(2) = —(% + 72
1., 4y 1.,
~u? Ui + 72 = > R22),  (I1.10)
we have
Bx(2) — wihd(2) < 0. (I1.11)

In deriving (I1.9) and (I1.10), we have used the
positive-definiteness of the integrands of j2*. There
is one further inequality which is implied by (I1.8).
The integral

;r]; ‘/: %“’)_, W' — \)? 771+(’L20') Silll 8. (W)
' @ ~2)

i=1
is positive for any real A. So too is the corresponding
integral for (I 4 1)—. That is,

(11.12)

N -2+ >0 (I11.13)
for any real \. Therefore,
G’ < ji’ji. (I1.14)

It follows that

M@Y= @4 — 2 < @)+ GO + A4 + A4
< B+ R+ AR+ AR = k@k2),

ie.,

m@)]* < ho(2h2(2). (I11.15)
It has been observed previously'® that, if the
analytic continuation of I, plus its appropriate
imaginary part has zeros at 2z, and z,, (IL.1) has
no solution with these zeros. This is a special case
of our results, for then,

I,
H (w — z,)

i=1

dwl '//t+2(w’)
Vo —w) [T @ —2)
i=1
Since I,/[I}-; @ — z;) is o(1/w’) for large w,
(I1.16) tells us that Ag(2) = A;(2) = 0. This is
inconsistent with (I1.9) and (II.15), and proves
the assertion.

These inequalities are by no means equivalent
to the set that can be written down by successively
assuming f;.(w) to have a zero first at z; and then
at z,. For instance, if 2, = 2,, this will merely give

(11.16)

A. P. BALACHANDRAN

an equation for f;,(w) to have a simple zero at z,,
while the preceding set corresponds to its having
a double zero at that point.
Let us derive these results in a different way.
Construct the function
W — w) (I1.17)

gl+(w) = fi.(w) H 2) ’

where the w; are complex varlables. This gives,
instead of (I1.4),

2(2) + = 1 f |:n,+(w’) sin’ 6;,(w’) ,I_Il z’;

+ na+n-W’) sin® Saan-W") I:Il %’i—z—w;):l = 0.
(11.18)

It is readily verified that Eqs. (I1.8) and (II.18)
imply each other. Eq. (I1.18) shows that

2(2) <0, (11.19)
if either (a) w, = w, and takes any real value or

®) —w, <w, Lw,t=1,2.
Since
ha(2) = waw.ho(2) — (wy + w)ka(2) + h3(2), (I1.20)
(a) gives
wihg(2) — 2w,hi(2) + R2(2) < O, (I1.21)
for any real w,. Therefore,
HET < HOMO, 14

R(2) <0, hi2) <O.

To reduce (b), observe that, for fixed w,, A3(2) is
a linear function of w, and will be negative for
—w, < w, < w, if it is negative at the end points
w, = =4w,. That is,
(Fwweho(2) — (£w: + w)l(2)
+ B3(2) < 0. (I1.23)
This is in turn a linear function of w, and so should
be negative for w; = -Lw,. Only the sign combination
w, = —w, gives a result different from (I1.21) and
this reads
—wihy(2) + h2(2) < 0. (11.24)
Equations (I1.22) and (11.24) are identical with
the previous set and are the necessary and sufficient
conditions for (II.19) to be true. These are also
necessary conditions for the existence of solutions
of (II.1) with zeros at 2z, and z,. The simplicity
and generality of the formalism which leads to
(I1.19) will turn out to be very useful in Seec. III
where a complete reduction of the analog of this
equation into its component inequalities does not
seem feasible.
Equation (I1.18) also tells us that h3(2) < 0



BOUNDARY CONDITIONS FOR A PARTIAL-WAVE AMPLITUDE

when w, = w*, and that it assumes any value. This
is not a new equation though, and is implied by
(I1.21) as a simple calculation shows.

We have remarked that (I1.19) is a necessary
condition if (II.1) is to have solutions with zeros
at z, and z,. However, even if (II.19) is not true,
it may very well be that the N/D decomposition
possesses solutions with these zeros, since these are
not always solutions of (II.1). Suppose now that
the N/D function exists and is not a solution of
(I1.1), either because (I1.19) is not satisfied or
for some other reason, The function D must then
have zeros which give rise to poles in N/D not
contained in (II.1). Therefore, if these poles are
m in number and are at the points b; and are all
simple,

M4+ (w) sin 2 87, (w) - A\
ReN/D = o =1 + ;-——-——w_ B
+ P f dw’ [nz+(w') sin® 87, (w)
w K w —w

_ Nasn- (’w)sm 04— (@]
W +w , w>w, (I1.25)
where the A;’s are the residues at the poles, and
the prime on ¢/, and &/,,_ distinguishes these
phage shifts from the ones in (II.1). Eq. (II.19) is
now replaced by

2@ ~ o [T =2 @, _z,)

im]1 fw=1
These poles may be called bound states provided
only that the b,’s are not complex and the residues
have the proper signs. Eq. (I1.26) is thus an in-
equality for bound state parameters in terms of the
known function £3(2).

III. SPIN-ZERO~SPIN-15 SCATTERING: GENERAL

<0. (11.26)

The amplitude f,.(w) is required to have zeros
at the n points 2, z,, - -+ , 2,. In the first instance,
let us suppose that none of these lies in the intervals
w, < 2z, < o and —o < z; < —w,. They are
allowed to be threshold zeros. If there are complex
zeros, they always occur in conjugate pairs. As in
Sec. I, we define the functions

gz+(’w) = fz+(W) H ’) (III.])

—z)’

and

Wem) = 1 [ dw' g @)

v 11

X jm=m—n+itl

fI W' —z)

i=1

W — w,) ’
(I11.2)

y m=m,
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where the product in the numerator is to be set
equal to 1if m — n + ¢ 4+ 1 > m and Ai(n) is
assumed to exist. This leads to the sum rule

hO( )+1 ) d]:l’) |:7];+(1D)Sm 6l+(w,) I-Il('w w;)

n ’
+ 1a+1-W') sin’ 8y -(w') H %I—;—I}:—S)] = 0.
(I1I1.3)
For any real a and b with ¢ < b, we will say that
{w;} is contained in D(a, b) and write {w;} & D(a, b)
if some pairs of w; are equal and assume any real
value and the rest satisfy the inequaltity a < w; < b.
Similarly, {z;} € E(a, b) if the 2; fall in neither
of the open intervals — o < 2; < aandb < z;, < o,
Eq. (IT1.3) is now seen to imply the followmg
theorem:

Theorem 1. Let Eq. (I1.1) be required to have a
solution with zeros at z,, z,, + -+ , z, where {z;} €
E(—w,, w,). Then, a necessary condition for the
existence of such a function is that

hin) <0
when {w;} € D(—w,, w,).

With a slight modification, this theorem can also
be used in situations where, for instance, the function
vanishes like a square root at some point.’

If some of these zeros lie on the unitarity cuts,
let 2, denote the one among these with the largest
positive value and z; the one with the smallest
negative value. Further, let |z, ;] > w,. If we rewrite
(II1.3) in the form

o+ 2 [+ [ )

X sin® 8, () J] =22

i=1 w — %

1 Iszt ™
+ 1—r I: + i| d]’:(l) N+ - (w)

we Iz}
X sin® 841y (w’) ’111 %-i—;%l

Lemma 1 is seen to follow:

(I11.4)

=0, (IIL5)

. Lemma 1. Let some of the zeros of f;.(w) lie
on the unitarity cuts and let 2z, denote the one
which occurs farthest to the right on the right-hand
unitarity cut and 2, the one which occurs farthest
to the left on the left-hand unitarity cut. Then a
necessary condition for the existence of such a
function is that

ha(n) + = 1 j:' a 7. (w’) sin® &, (w") H ﬁw_—_w,)

i=1 Z)
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1 lztl d
+ “f ;:/) N+ -(W')

™ we
X sin® §pery-(w') ,I=]1: (W ::_-::))
when {w;} € D(z, z,). If z, does not exist, the
second integral in (II1.6) is to be removed and the
condition {w;} € D(z;, 2z.) is to be replaced by
{w;} € D(z;, w,). A similar change is to be made
if 2, does not exist.

Equation (II1.6) is much weaker than (III.4) since
it involves the phase shifts &;.(w) and 6u+1-(w)
which are not known a priori. For threshold zeros,
2; = =+w, and (III.4) and (II1.6) give identical
results as they should.

In physical situations, the inequality (II1.4) is
not the best possible one. Often, fairly detailed
information regarding the behavior of the phase
shifts 6,, and 6..,,- for some ranges of energies
Wiy — Ay, tow,, + AL E=1,2, ---, p)and
w,_. — A;_tow,_ + A,_ (¢ =1,2, ---, ¢) can be
obtained from experiment. If such is the case,
(I11.3) implies

wi++Ais
hon) + = Zf du,) M+ (W)

<0, (IIL.6)

i=1 Jwis—Ait
X sin® 8, (w") H = S)
i=1 ’
i dw
+ T § -[w,'_..A.._ k, Na+1- (w)
W' + w;)

X sin® 8¢14n-(w') II L W+ z,)

hﬁ(n)-l-EJ +ZK <0,

i=1

(I11.7)

where some pairs of w; lie in the intervals w,, —
A S w S waee + A and ’_(wi— + Al-—) <
w; < —(w,— — A;_) and the rest of the {w;} &
D(—~w,, w,). This leads to Lemma, 2.

Lemma 2. If the integrals J,; and K, are known
to have the minimum values min J; and min K,
when some pairs of w; lie in the intervals w;, —
Ay S wy; L wiy + As and —(w,- + Az—) Sw; <
—(w,- — A;_) and the rest of the {w;} € D(—w,,
w,), and (II.1) is to have a solution with zeros at
{z;,} € E(—w., w,), it is necessary that

k) + >, min J; + > min K; < 0,

i=1 i=1

(I11.8)

when {w;} lie in these intervals.

If any of the lower limits of J; ot K, coincides
with w,, (II1.8) can be improved by modifying the
ranges of w; as in Lemma 1.

A. P. BALACHANDRAN

Equation (II1.8) corresponds to the existence of a
particular type of solution for (II.1) while (III.4)
corresponds to its having some solution. Lemma 2
should therefore prove more useful in practice since
it contains more physics.

To get inequalities for bound-state parameters,
we proceed as in Sec. II. The result is the next lemma.

Lemma 3. Suppose that {z;} € E(—w,, w,), and
suppose further that an N/D solution with these
zeros exists and has m poles which are not implied
by (IL.1). Let these poles be simple and be at the
points b; with residues A,. Then

RX(n) — Z‘; A H (b — z) <0, (IIL9)
when {w;} € D(—~w,, w,).
Let us rewrite (III 9) in the form
ho(n) — ; )y H b — z)
= Ma H )) <0. (IIL10)

These equations are true regardless of whether the
poles are bound states or ghosts. If they are, in fact,
bound states, we have the further inequality
—w, < b; < w, If

TG

i=1

ho(n) — > 0 (I1I1.11)
as one of the w,’s, say w,, is varied between two
points in the interval —w, < w; < w, and the
rest of the w;’s are held fixed,

—Am II ) <0 (I11.12)
in the same domain of the variables. Hence, b.,
cannot lie in this range of w,, for if it did, the factor
(b, — w,) will change sign as w, crosses b, and
(IT1.12) will be contradicted. For m > 1, (II1.11)
involves bound-state parameters while initially, we
are given only A2(n). The most interesting result
therefore emerges when m = 1 which we state as
a lemma.

Lemma 4. Let {z;} € E(—w,,
there is one bound state, and
kYn) > 0 (I11.13)

for some range of one of the w,’s in the gap between
the unitarity cuts when the remaining w,’s are held
fixed in D(—w,, w,), the bound state does not lie
in this range. '

A corollary is that, if h2(n) > 0 as one of w,’s
varies between —w, and 4w, and the remaining

w,). Then, if
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w;’s are held fixed in D(—w,, w,), there are at
least two poles in the N/D solution not contained
in (I1.1).

‘We can now consider a related boundary condition
where the values of the function are specified at some
set of points z; (j = 1, 2, --- , n). Let fi,(2;) = a;.
As before, construct the function

gi-(w) = fir(w) Hl w)) (I111.14)
This gives
n fI (2: — wy) o 3,
hg(n)"z:a,-—""i’————_‘_l ik’lg_
im1 H @ — 2) T Jow,
[ﬂz-x-(wl) sin’® 8, (w’) I;II (w — 3)
+ na4n- ('U))Sln drr1y— (fw’) I;I1 (w i’;‘vr)] = 0
(I11.15)

and implies Theorem 2.

Theorem 2. Let f;.(w) be required to assume the
values a; at the points 2; (j = 1, 2, --- , n) where
{z;} € E(—w,, w,). Then, if such a function is to
exist, it is necessary that

n fI (zi - wi)
> 6 52
o H@

When {w,} E D(_wt) wt)'

Equation (II1.16) should prove useful if there
are unstable particles present in the system which
are identified with poles on some unphysical sheet.
As an example, consider the continuation of f,,(w)
through the elastic unitarity cut (assuming that
it exists). This continuation is given by

1vw) = fi )/l + 2ékfaw)].  (II1.17)
Therefore, if there is a pole on this sheet at w = z;,
fise) = —1/2ik;, (I11.18)

where k; = k(z;). In practice, z; can be fixed by
requiring a resonance of specified mass and width
at least when the width is small. Equation (III1.18)
then determines one of the a;. Further, f,,(2%) = a*.
When these values are inserted into (II1.16), if
the inequality is violated, we may conclude that

(I1.1) has no solution which is such that f,.(z;) =a;.
If the integral I, in (I1.3) diverges, let

ho(n) — <0 (111.16)

1
Iy~ = xa(w) (II1.19)

for large positive w. Then, it is known''* that
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1 (°d
xio@) ~ =2 [ [, ) sin® 51, )
T Juw,
+ a0 -w’) sin’ Saan-w)], (I11.20)
for large positive w. Therefore®,
xi@) <0, bas@)| < 2w, (1IL2D)
for all sufficiently large positive w. Further,
ha_o(n) < 0. (I11.22)

These results are summarized in the next theorem.

Theorem 3. If (111.19) is true, where |x;.(w)] —
as w — o, then (II.1) has a solution with zeros
at {2;} € E(—w,, w,) only if

xi.w) <0, .| < ,% In w,

for all sufficiently large positive w, and
ho_s(n) < 0,
i} € D(—w., w,).
The statement |x;+(w)] < (4/7) In w can in fact
be strengthened and Ref. 2 should be consulted for
a detailed discussion of this point.

Theorems 2 and 3 can be easily extended to
cover the situations implied in Lemmas 1-4.

IV. SPIN-ZERO-SPIN-ZERO SCATTERING: GENERAL

(I11.23)
when {w

In the previous sections, we were obliged to
work in the w plane due to the presence of kine-
matical singularities if s = w® is chosen as the

complex variable. There is, however, no such
difficulty for a spinless system. Let
fi(s) = [$*/k)[m(e)e" " ~ 1]/24 (IV.1)

be the partial-wave amplitude for angular momen-
tum [. It satisfies the dispersion relation

s .
5% (s} sin 26,(s)

= fileo) + 2= )

§ — 8
Pfds (5" — so)s" — )

+ sﬂPf ds’ sj 7,(s”) sin2 8,(s’)

P& s —9 *2%
(IV.2)
where s, = w}. The subtraction in (IV.2) may or

may not be necessary according as whether the
integral

Y A P 71(9)
L= a2 (IV.3)

diverges or converges.” In particular, for s waves,
its existence may imply that there are no arbitrary

*G. F, Chew and S. Mandelstam, Nuovo Cimento 19,
752 (1961).
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parameters in the system, as has been suggested
by Chew and Frautschi.’
We may now define the integrals
”(m) 1 f ds’ ‘p (8) s,i
AN | (T

i=1

(S' - si))

x ]I

jmm—nti+l

n<m-—1, (V4
and the domains D(a, b) and E(a, b) for {s;} and
{2;} as in Sec. IIL. This leads to Theorem 4.

Theorem 4. Let f,(s) be required to have zeros at
the points z; (j = 1, 2, - -+, n), none of which lies in
the interval s, < z; < «, thatis, {z;} € E(— =, 8,).
Two cases are possible.

(a) The integral h)_,(n) ex1sts Then, it is
necessary that
ha-s(n) < 0
when {s;} € D(— =, s,).
(b) The integral hJ_,(n) does not exist. Let

Iv.5)

P ds’ \01(8 ) ~ ___!-_
T[S~ -t ave)
a8 8 — o, Then, it is necessary that
2
xi(s) <0, |Xz(3)l < - Ins
for all sufficiently large positive s, and
Fa-a(n) < 0 (Iv.7)

when {s;} € D(— =, s,).

Unlike the w;, the variables s; are not bounded
from below since (IV.2) has no analog of the last
integral in (II.1). This results, for instance, in the
demand that h;_, be negative for every p > 1 and
1 < n — p while, previously, it was required to be
negative only for every even p.

It is clear that in this case too, we can duplicate
every result of Sec. III by making a few suitable
changes.

Incidentally, all the results of this paper can
also be used in potential scattering after a few
trivial alterations.

Since the completion of this paper, it has been
realized that the questions treated in this paper
can be studied in terms of certain reduced moment
problems.® This observation will be developed
further in a paper under completion.

§ G. F. Chew and 8. C. Frautschi, Phys. Rev. Letters 7,
394 (1961); 8, 41 (1962).

8 J. A. Shohat and J. D. Tamarkin, The Problem of Mo-
ments (American Mathematical Society, New York, 1943).
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APPENDIX

We wish to study the functions hi(m) and try
to deduce a number of simpler equations from
(I11.4) and (IV.5). The other inequalities can be
reduced similarly. Let us first prove the following
identity for the &j(m) of (II1.2):

»

ha(m) = 2 (=Delp, Hh27Hm). (A1)
k=0
The symbol ¢(p, k) denotes the sum over all combina-
tions of the p variables Wy—p+is1, Womontrize, *°°
Wa-n+i+p taken k at a time, and ¢(p, 0) is deﬁned
to be equal to one. The proof is by induction.
For p = 0, (Al) is a triviality. Since

+p~k {+p+1—Fk §+p—
.'.-1’ (m) 3 (m) - wm—n+i+p+lh:;—z-
we have

ha(m) = By ' (m) — clp + 1, Dhi*i(m)

+ Z( 1e(p, B)Ri3* " (m)

i(m), (A2)

+ Z (_l)kHC(p: k)wm—n+i+p+1h::::’1‘(m)
k=1
- h-'+za+1 (m) — cp + 1, l)h':—pl(m)

+ Z( Dielp, )22 ™H(m)

p+1

+ Z( 1) C(P; k - ]-)wm--rﬁo+17+lh’|ﬂ’+l k( )

p+1

= 2 (—Delp + 1, A3 H(m), (A3)
k=0
because of the identity
C(p, k) + 'wm-n+€+p+lc(p: k— 1) = C(P + 1; k) (A4)

Equation (A3) completes the induction.
We may note two more useful identities. Thus,

20—k
E azy-kwm—n+|+lh:t+k 2p(m))

ha(m) =

where

(Aba)

i = (- ol . (A5h)
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if
Win-niit1 = Wmepties = *°° = Wnepsitape
Further,
halm) = 32 Bl enhitin(m),  (AGa)
where
P = (—1\""F __L
Br—k ( 1) k! (p - k)! ’ (Aﬁb)
if
Wh—nti+l = —Wnen+it+2

= +wm—n+i+3 = 0 = —Wnonsit2pe

Equations (A5) and (A6) can be proved either by
induetion or by binomial expansion. For instance,
for (A6a), induction leads to a difference equation
for B_,:

5::}—1; + ﬁ:-k - B:+1—k = 0,
with the boundary conditions
g = (=1, B = 1,
for which (A6b) is the solution.

It may be verified that the following inequalities
are necessary and sufficient for (II1.4) to be true:

(o))’ < B_s(n)Ri(n),
Ro_,(n) <0, Rin) <O,
hi(n) — wih)_.(n) < 0.

Further reduction with such completeness appears
difficult since it requires the location of zeros of
polynomials of increasingly high order. We may,
however, note the conditions implied by (A8) when
[w;| £ w,. These are obtained by setting each of the
w; = =w, Let any member of this resultant
class of functions be denoted by ji(m). The latter
can be computed by using (Al). Equation (AS8)
therefore leads to the following inequalities for the
corresponding members of the class:

(fa-1-2(7 — 29)]* < fa-2-2o(0 — 2Q)ja—2s(n — 29),
]3—2—2?(”' - 2(1) < 0’ j:—?a n — 2Q) < 07

(A7)

(A8)

(A9)
-2t — 2¢) — Wijn_s_3,(n — 2g) < O,

where ¢ = 0,2,4, ---andp =¢, ¢+ 1, ---,
integer {3(n — 2), 3(n — 3)}. When ¢ is increased
by two, every possible choice of two pairs of complex
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zeros conjugate to each other are to be removed
in turn. This rule may require a word of explanation.
We have remarked in Sec. II that the inequality
ha(n) < 0 when w;,; = w* is already implied by the
corresponding inequality gotten by setting w;,, = w;
and letting them be real. We can therefore derive
R _..(n — 2¢) < 0 for any ¢ from hl(n) < 0 by
substituting the values of the complex zeros for
the appropriate w,;. But (A9) with ¢ = 0 is necessary
and sufficient only for that part of (II1.4) where
one pair of variables are equal and the rest are
constrained by |w;] < w, Thus, when ¢ = 0,
(A9) enables us to remove one pair of zeros from
(I11.4), but not two pairs. We should therefore
include a separate equation for ¢ = 2. The situation
then repeats itself and we have to include an equation
for ¢ = 4 too, and so on. There is no point in as-
sociating ¢ with a real zero, however, as such equa-
tions follow from (II1.4) when one or more of the
w; coincide with these real points and hence are
implicit in (A9). For a similar reason, we have not
written the equations 72_,,(n—2¢) <0 for p>¢-+1 in
(A9) as these are consequences of 75_,_,,(n — 2¢) < 0.

Let us investigate (IV.5). The identities (Al),
(A5), and (A6) are still true if the w; are replaced
by s;. Instead of (A8), we find

(ha-2(n)]* < Ras(mbn-,(m),
RS-s(n) < 0,
hi(n) <0,

hi-a(m) — shi-eln) < 0.

(A10)

The following identities can now be verified:

h,’.(m) .'TZ lsm-—n+i+1| hi—l(m); (Al11)
k;(m) = h;(m) lam--+-'+x-tu—n+o'+n-"'-n--u

e (=9
= 2D pl(n— 1 —p)!

=0
The last is a consequence of (Al). The analog of
(A9) are therefore
[n2-s(n — 29)T" < kn_s_,(n — 2¢)k;_;_,(n — 2q),
k?.—s—p('ﬂ - 2Q) < 0)

stha_o(m).

(A12)
ki—?a—l(n —2¢9) <0,
k:—2—p(n — 2q) — s,kf._s_,(n - 2¢9) <0,
whereg =0,2, ---andp =2¢,29+ 1, -+ ,n — 3.

As in (A9), ¢ is associated with the complex zeros.
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In this paper it is shown that several cases of one-dimensional N-body problems are exactly soluble.
The first case describes the motion of three one-dimensional particles of arbitrary mass which interact
with one another via infinite-strength, repulsive delta-function potentials. It is found in this case
that the stationary-state solution of the scattering of the three particles is analogous to an electro-
magnetic diffraction problem which has already been solved. The solution to this analogous electro-
magnetic problem is interpreted in terms of particles. Next it is shown that the problem of three
particles of equal mass interacting with each other via finite- but equal-strength delta-function
potentials is exactly soluble. This example exhibits rearrangement and bound-state effects, but no
inelastic processes occur. Finally it is shown that the problem of N particles of equal mass all inter-
acting with one another via finite- but equal-strength delta functions is exactly soluble. Again no in-
elastic processes occur, but various types of rearrangements and an N-particle bound state do occur.
These rearrangements and the N-particle bound state are illustrated by means of a series of sample
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calculations.

I. INTRODUCTION

INCE the advent of quantum theory, physicists

have relied on exactly soluble problems to
describe some of the strange effects which have
quantum mechanical origin. The way in which the
potential enters the Schrodinger wave equation
makes this equation soluble only for a very limited
class of potentials, and with the exception of the
Coulomb potential and the harmonic-oscillator
potential, the exactly soluble problems are not
particularly good imitations of the interactions which

exist in the physical world. On the other hand, .

these exactly soluble problems illustrate a broad
range of effects which are present in the physical
world, and therefore at least allow us a qualitative
description of the processes which can occur, and
perhaps an insight into perturbation and approxima-
tion methods which can be used in more physical
problems.

One would hope that exact solutions of N-body
problems would be of help in producing similar
insights into qualitative effects and possible approx-
imation methods for problems of this type. There
are, however, additional mathematical difficulties
introduced by the presence of more than two particles
which have made the exact solution of an N-body
problem a more elusive goal.''® These mathematical
difficulties are related to the broad range of physical
effects which are possible due to the presence of
more than two particles.

Let us discuss the kinds of effects which may
occur in N-body problems. We know that the

1 K. Lieb and H. Koppe, Phys. Rev. 116, 367 (1959).
2 R. Jost, Commun. Math. Helv. 28, 173 (1954).

many-particle wavefunction will contain all of the
information about two-particle interactions because
we may isolate two particles by putting the other
particles so far away that their influence on the
remaining two is negligible. Under these circum-
stances we will recover the two-particle wavefunc-
tion. More complicated effects arise when the N
particles are close together in space and time.

Our task is to discuss those effects which arise
from the proximity of the N particles, so let us
focus our attention on the simplest problem which
contains these effects, the three-body problem. Even
here we expect a large number of physical effects.
We expect finite probabilities for any two particles
with an attractive potential between them to be
bound in the final state, even though all of the
particles are free in the initial state. Also, there
will be finite probabilities for the particles to be
scattered from a free state to another free state with
a different distribution of energy among the particles.
If a free particle is incident on a bound state we
would expect that this free particle could ionize,
excite, or perhaps replace a bound particle. In
general we would expeet finite matrix elements
between any initial and final state which have the
same energy.

In view of the many effects which exist in problems
of this type it is not surprising that exact solutions
or even reliable approximation methods are difficult
to find. In order to construct exactly soluble prob-
lems we are going to be forced to make many
simplifying assumptions. We are going to deal with
a three-body problem where all of the particles
move in only one dimension and interact with one

622



ONE-DIMENSIONAL

another through delta-function potentials. We will
later argue that this does not a prior: restrict the
- number of physical effects which can oceur, except
for the fact that two particles which interact
through an attractive delta-function potential have
only a single bound state, and therefore an incident
third particle eannot excite to another bound state,
but only to the continuum.

II. FORMULATION OF THE PROBLEM
We consider the Hamiltonian
(LE
2 M1 dxf M2 dxi M3 dx:
+ As(z, — 952) + Ba(xz - xa) + Ca(xl - 2?3),

which arises when three particles of mass M, M,, M,
at positions z,, x., xs interact with one another via
delta-function potentials with strengths 4, B, C
which depend on coordinate differences between
particles.

If we make the change of variables

=M, 4+ M+ M3)_£(Mlx1 + Mz, + Maxs),

- (MM, + Mz)]% <M1x1 + Mz, _ x)
YT+ ML M\ kM, T )

T = (Mle)%/(]lL + Mz)%(xx — ),
the resulting Hamiltonian will be

555+ )+ a2
o\ tap T T AN E

+ Bé(;l— [x cos a + ysin a])

H=

H=

+ ca(i [z cos p — ysin ]),

1 1 1]
— = [ﬁ + ﬁ] ;
Meig [ i
tana = [(M, + M, + M)M,/M,M,}},
tan 8 = (M, + M, + Ma)Ml/MzMs,]*-
Transformations of this type are discussed in the
Appendix. Formulas are derived which are valid
for N particles and not restricted to one dimension.
If we remove the center-of-mass motion of all
three particles and eliminate the time from Schro-

dinger’s equation, the stationary-state equation for
the internal motion of the three particles will be

wd &
[—5 (z‘ T @)
+ AB(—I— x) + BB(—I- [z cos & 4 ¥ sin a])
M2 Mg

+ C&(;ll; [z cos 8 — y sin ,8]) — E]gb = 0.
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tan a=[(hw'%3‘z]'/2 =

,‘(« &>
2 o a ~T°# 47 (M‘+M2+M3)M3

a mny:[__Tle.. |12
Y

| X

Fic. 1. Potential diagram for three particles interacting in
one dimension,

This differential equation may be interpreted as
describing the motion of a single particle in a
two-dimensional space. Interpreting the differential
equation this way may seem awkward since it
tends to obscure the true nature of the physical
problem, but we will find that the interpretation
in terms of particles is not difficult once we have
the solution to this mathematically equivalent
problem.

The potential in which the single two-dimen-
sional particle moves is zero everywhere except on
the lines z = 0, 2 = y tan B, z = —y tan o, as
shown in Fig. 1. We see that we must solve
(V*+k*)¥=0 everywhere except on the boundaries
provided by the “line” delta functions. It is well
known that the boundary condition on such a
delta-function line is that there is a discontinuity
in the normal derivative of the wavefunction which
is equal to the strength of the delta function times
the value of the wavefunction on the boundary.

Even this problem is an extremely difficult one
mathematically and only limited progress has been
made toward its solution. In Sec. IV we will solve
a special case of this problem where the masses
of the particles and the strengths of the delta func-
tions are chosen in a particular way.

Another special case of interest has already been
solved for us. If we take the strength of the delta-
funetion interactions to be infinite, then the wave-
function must approach zero on the delta-funection
boundaries. This problem is analogous to the diffrac-
tion of eleectromagnetic waves from wedges and
corners made of conducting materials, and is soluble
for arbitrary angles between the delta-function lines
and hence for arbitrary masses of the interacting
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particles. We propose to make a quantum mechanical
interpretation of the solution to this analogous
electromagnetic problem.

III. INFINITE-STRENGTH DELTA FUNCTIONS

A. Discussion of the Solution

The analysis of the infinite-delta-function problem
is simplified by the fact that the wavefunction is
confined to one of the wedges of Fig. 1. We interpret
this as meaning that the particles stay in a particular
order in the one dimension. The particles cannot
transmit through one another because they cannot
penetrate the infinite-strength delta-function wall.

Most readers will recall that certain wedge
problems may easily be solved by the method of
images, which is equivalent to tracing rays through
a wedge until the wave vector for the ray is pointed
in such a direction that it will not hit one of the
sides of the wedge again. For a wedge of arbitrary
angular opening, there will be two such rays emerging
from the wedge corresponding to the bifurcation of
the incident wave by the two sides of the wedge.
If, however, the angular opening of the wedge is
w/n, the reflected rays will emerge in paraliel with
one another and fill all of the space within the
wedge. In this case the entire solution to the problem
requires only the sum of the incident plus the
reflected waves.

. For a wedge of arbitrary angular opening, the
outgoing waves will emerge in different directions
and either overlap or not fill all of the space within
the wedge, and thus something must be added to
the solution to fit the continuity conditions along
the so-called “boundaries of geometric optics’”” which
are the terminators of the regions filled by the
outgoing waves.

Diffraction problems of this type have received
extensive treatment in the literature beginning with
Sommerfeld’s paper in 1896.> The interested reader

3 A. Sommerfeld, Math. Ann. 47, 317 (1896).
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can trace the literature from Oberhettinger* (our
principal source), who has given a particularly
convenient treatment for quantum mechanical
interpretation.

The solution, as we have argued that it should,
congists of all of the reflections in the various regions
of space plus a diffraction term which fits the con-
tinuity conditions along the boundaries of geometric
optics. For the scattering solution we are interested
only in the far-field part of this diffraction term.
For a discussion of the general boundary conditions
and form of the solution of problems of this type,
see Ref. [5]. We write the far-field solution as

¥ = Yincidens + tWo-body reflections

+ f((") ¢, a)(e””/ri) + O(T_;))
where ¢ and ¢’ are, respectively, the angles of the
incoming and outgoing k vectors, and « is the angular
opening of the wedge. The coordinate system is
shown in Fig. 2.

Oberhettinger has provided an expansion from
which we may calculate 7,

,. v _ Msin (r/a)
f(¢;¢ 70‘) 1

X I AN T T = \? .
(sin ——sin———> - <cos — o8 —— — €08 —)
o a a a o

Notice that (o, ¢’; 7/n) = 0, so that, as asserted
earlier, there is no diffraction when the wedge is
of angular opening x/n. The singularity of f along
the boundaries of geometric optics, where = =+
(¢ £ ¢') = 2na, is required to fit continuity con-
ditions,

Before going further let us analyze a particular
example to practice interpreting this solution in
terms of particles.

B. Analysis of a Particular Example

As an example we will take the interaction
between two particles of equal mass and a third
particle of infinite mass. The two light particles
interact with each other, but we will assume that
only one of the light particles interacts with the
massive particle. All interactions are infinite-
strength, repulsive delta functions.

The potential diagram for this problem is shown
in Fig. 3. We must solve (V* + E*)¢ = 0 with
¢ = 0 on the lines z = 0 and ¢ = y. The inter-
pretation of the solution of this problem is simplified

¢ F. Oberhettinger, J. Res. Natl, Bur. Std. 61, 343 (1958).
& E. Gerjuoy, Phys. Rev. 109, 1806 (1958).
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by the fact that the z coordinate of the potential
diagram is the position of the z particle relative
to the massive particle (the x particle is the one
which interacts with the massive particle), and
the y coordinate is the coordinate of the y particle
relative to the massive particle.

If the incoming wave is in Region I no three-body
reactions occur since Region I is a wedge of =/n.
The total solution in this region is a succession
of the two-body problems. The experimental arrange-~
ment corresponding to Region I would have the y
particle starting to the left of the x particle as shown
in Fig. 3.

In Region II the situation is more interesting be-
cause the angular opening is 2x. The experimental
arrangement which corresponds to this region has
the = particle starting to the left of the y particle,
again as shown in Fig. 3.

We will assume that the incoming beam is
“collimated” in the sense that the x and y particles
in the incoming beam are adjusted so as to be at
the origin at about the same time. This introduces
a correlated distribution in the incoming state, that
is the probability of finding an z particle per unit
length depends upon where the y particle is. The
collimation is necessary because otherwise the proba-~
bility per unit volume to find the z particle at z,
and the y particle at y, would depend on inter-
ference terms between the incident wave, the
two-particle reflected waves and the true three-body
waves. By introducing a collimation we have
allowed the possibility of positioning the detector
outside the beam and the two-particle reflections
where the true three-particle effects are directly
observable without interference.

As is usual in problems of this type, the proba-
bility per second to be scattered into some ‘‘solid”
angle is proportional to the incident flux. This
flux is neither the z-particle flux nor the y-particle
flux, but the magnitude of the vector flux in the
two-dimensional space. We will assume that the
incident beam is normalized such that

z tkyy

¢incident = (Pxpu)}eik‘e ’
where p, and p, are, respectively, the number of z
particles per unit length and the number of y

particles per unit length. Under these circumstances
the magnitude of the flux® is p.p,(? + ¢2)! and

¢ It can be verified that this quantity is the scale factor for
the reaction rate by calculating the reaction rate from the
“golden rule’’ or by analyzing what happens to each Fourier
component of a situation where a packet of z particles is
incident from the left and a packet of y particles is incident
from the right.
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Fi1e. 3. Potential diagram and corresponding experimental
arrangements for the particular example.

the reaction rate is
w = p,p,02 + ) |flo)|*

per second per unit solid angle.

A possible experiment would be to place an z-
particle momentum detector to the left of the
massive particle and measure the outgoing mo-
mentum distribution of z particles. This distribution
would have two high peaks corresponding to the
geometrical reflections of the incoming beam, but
it would also have z particles of every possible
momentum from zero up to the maximum possible
consistent with the conservation of energy. The
height of the peaks of the distribution would be
proportional to the total number of the incoming
particles, whereas the distributed portion of the
spectrum would be proportional to the beam flux.

A second type of experiment would be to count
coincidences of particle z situated between z, and
z, + Az, and particle y situated between y, and
Yo + Ay, The coincidence rate for this experiment
is computed from the reaction rate given above
where tan ¢’ = x,/y,. For fixed Az, Ay,, the coinci-
dence rate would decrease as

@ + )
C. Summary of the Infinite-Delta-Function Results

The goals of analyzing the infinite-strength delta-
function problem were limited. Of the three-body
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Region IL
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Region X Region YT

Fig. 4. Ray diagram which applies when the incoming (6)
hits potential (a) first.

physical effects outlined in the Indrotuction the
only one we expected to see was the redistribution
of energy among the three particles, and this we
have seen in our particular example. We could not
have expected to see any of the other effects,
because by using infinite-repulsive delta-functions
for all of the interactions we have guaranteed that
there will be no bound states to be ionized or
rearranged.

We have, however, learned a good deal about
the structure of solutions of problems of this type,
and we could at least make a guess as to the form
the solutions might take if the delta-function walls
were transmissive. We would guess that the wave-
function would consist of all of the transmitted and
reflected waves in the various regions of space,
plus diffracted waves which fit the continuity con-
ditions along the boundaries of geometric optics.
In spite of these insights no one has yet been able
to construct a general solution to the problem
where the interpotential angles are arbitrary.

Suppose we could construct a problem which
bears the same relations to the finite-strength delta-
function case as does the v/n wedge to the infinite-
delta-funetion case, that is a problem in which
there is no diffraction. If such a problem exists, all of
the angles between the potential walls must be =/n
because the transmission from wedge to wedge would
assure that there would be some problability to get
into a diffracting (non n/n) wedge. Since the three
interpotential angles of Fig. 1 must add up to 180°
there are only three possibilities for mass ratios
where all angles are =/n. These possibilities are:

(1) The masses of two like particles are in-
finitesimal compared with that of a third particle.
The interpotential angles in this case are 45°, 45°,
and 90°.
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(2) Particle 1 is of infinite mass compared to
particle 2 which in turn is three times the mass
of particle 3 (90°, 60°, 30°).

(3) All three particles have equal mass (all angles
are 60°).

We have examined all three cases and it turns
out that the first two possibilities will always
diffract if the strengths of all of the potentials
involved are finite, but as we will now proceed
to show, the third possibility will not diffract if
the strengths of all the potentials are the same.

IV. EXPLICIT SOLUTION TO A PROBLEM WITH
FINITE-STRENGTH DELTA-FUNCTION POTENTIALS

A. Free-Particle Solution

The Hamiltonian for the internal motion of three-
one dimensional particles of equal mass interacting
with one another by equal-strength delta-function
potentials is

.\/—

d d? 1 3
H=‘<a?+a?>—ga@>—ga(5x+7y)
_ 5(1 _ V3 )

702%™ T

We have chosen units so that A = M = 1. If ¢ is
the ‘“true” strength of the delta-function potentials,
the equivalent strength is

—g = V2e.

The potential diagram for this problem is three--
line delta functions intersecting at 60° angles. The
method of solution will be to trace rays through
this complex of delta functions and verify that
there are no boundaries of geometric optics and
hence no diffraction.

We again wish to take literally the mathematical
equivalence of this Hamiltonian to a single particle
in a two-dimensional space, and return to the
interpretation of one-dimensional particles after we
have solved the problem.

The potential diagram and the rays which result
are shown in Figs. 4 and 5. Any sequence of reflec-
tions of the incident ray result in one of six rays
as shown in Fig. 6. As is indicated in Fig. 6, there
are three possible angles of incidence for these rays
to strike a potential. These angles are ¢, 60° + ¢,
and 60° — .

The rays transmit or reflect with an amplitude
which is dependent only on the component of
momentum perpendicular to the potential surface,
that is, the sine of the angle of incidence. As is
usual in problems of this type we do not have to
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consider path-length effects because two nearby
pieces of the phase front travel the same distance
between incoming and outgoing wave.

For a delta-function potential of strength g the
transmission coefficient may easily be shown to be’

_ 2k/g 8 _ 2k
T =og+1-85+10 577
Similarly, the reflection coefficient is
Bl —1

2k/g+18+1°

where k is the component of the wave vector
perpendicular to the delta-function surface.

We denote the six possible plane waves ¢, through
Ve Their momentum vectors are shown in Fig. 6.
For convenience we have labeled the potentials a,
b, and ¢ and numbered the Regions I through VI.

In Fig. 4 we consider the incoming wave to be
of Type 6 in Region I. The incoming wave may
strike potential a first. If it does so it has an
amplitude 7', to be transmitted into Region II and
an amplitude R, to be reflected into a Type-5 wave
and stay in Region I. If the plane wave is transmitted
through potential a, it will then hit potential b and
again be transmitted or reflected, and so on. Notice
that each ray interacts only three times, once at
each angle of incidence, before becoming an out-
going ray. This is a consequence of equal-massed
particles. Figure 5 illustrates the sequence of reflec-
tions we would obtain if the incoming Type-6 plane
wave in Region I struck potential b first.

By following rays through the potential complex

Region 1 Region IT 2)

Region IV

Region I

Region YT

(5) ()

F1c. 5. Ray diagram which applies when the incoming (6)
hits potential (c) first.

7 P. Morse and H. Feshbach, Methods of Theoretical Physics
ﬁVIcGraw—Hill Book Company, Inc., New York, 1953), Vol.
. p. 1644.

N-BODY PROBLEMS 627

“

(s ©

F1a. 6. Representation of the six plane waves which may be
generated by reflections in the potential complex.

it is possible to evaluate the amplitude for each
type of wave (i.e.,, Types 1 through 6) to be present
in each region. As we have seen in the case of the
infinite-strength delta functions, the incoming wave
is bifurcated depending on which potential wall it
hits first. As we saw in the infinite-delta-function
case, the two halves of the plane wave must reunite
to form a complete plane wave or diffraction will
result. In this problem the two halves of the plane
wave must be parallel and fill all of space and be
equal in magnitude and phase.

It would seem at first that this problem would
contain diffraction because the outgoing 2 in Region
II is made up of the sum of two amplitudes from
the potential a side and only one amplitude from
the b side. From the a side we have

T:R:R, + R:R,T,

= (83 + 8)/(s1 + Dis2 + L)(s3 + 1),
but

8 — 8 = (2ik/g)[sin (60° + ¢) — sin (60° — )]

= (2ik/g) sin ¢ = ;.
Thus
81+ 8 = 8

T.R.R, + R,R,T,
= 32/(83 + 1)(32 + 1)(31 + 1) = R1T2R3,

which is exactly equal to the contribution from the
b side; thus there is no diffraction. A similar situation
occurs in Region III and the same relationship
between §’s again shows that there is no diffraction.
In all of the other wedges it is clear that the two
halves have the same magnitude and phase because
the amplitudes of the two halves are made up of
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TasLe I, Amplitude of plane waves in the various regions for the free wave solution.

Wave type Region I Region IT Region ITI
6 1 T Ts
5 R ) RiTs
4 Rst T3R2Rl + RsR:Tl = RngRg
3 R;RzR; "I“ T3R2T1 Tle Tst
2 lR2 TIRZR3 + R1R2T3 = R3T2Rl
1 3 342

Wave type Region IV Region V Region VI
6 T.T, T3Ts ThT:T's
5 T3T Ry
4
3
2
1 T:TsR,

the product of three complex numbers which are
the same for both halves.

Since there is no diffraction, the solution to the
problem may be specified by giving the amplitude
for each of the six plane waves in each of the six
regions. These amplitudes are given in Table 1.

B. Interpretation of the Solution in Terms
of Particles

Let us now interpret our solution in terms of
particles. If we have the three particles oriented
along a line, say in the order 1 2 3 from left to right,
and we are interested in the scattering of these
three particles off one another, we see first that
particle 1 must be traveling to the right faster
than particle 2, which in turn must be traveling
to the right faster than particle 3. This is because
we are interested in a scattering problem and the
initial state of a scattering problem must be such
that if the state is projected backwards in time
there are no collisions. If particle 1 were traveling
slower than particle 2 and we projected this state
backwards in time, there would be a collision be-
tween 1 and 2 at some time in the past. This “no
collision in the past” condition is the condition
that the incoming plane wave be aimed into a
wedge in such & way that the tail of the &k vector
not intersect any of the delta~-function walls.

In the potential diagram we recall that the in-
coming plane wave was bifurcated by the two walls
bounding the Region-I wedge. In terms of particles
this means that there are two possible first inter-
actions among the three particles, viz., particle 1
may hit particle 2 or particle 2 may hit particle 3.

When two particles of equal mass collide in one
dimension, the amplitude to reflect is the amplitude
that the particles retain their original order along

the one-dimensional line and the amplitude to
transmit is the amplitude that they exchange
positions along the line. Each of the six wedges
of the potential diagram represent a given order
of the particles along the line. If Region I is the
order 1 2 3 from left to right, then Region II must
be the order 2 1 3 because to get from Region I to
Region II, particle 1 must transmit through particle
2 since a is the potential between particles 1 and 2.

In two-body collisions between particles of equal
mass no new velocities are generated. That is to say
that the particles in the incoming state have the
same velocities as the particles in the outgoing
state, although the particles may switch velocities
during the coilision.

What we have demonstrated in our problem is
that there are no new velocities generated even
though there are three particles present. If we make
any small change in our problem, such as letting
the strength of one of the delta functions change
or one of the masses be slightly different from the
other two, the character of the solution will change
radically due to the presence of diffraction, and
there will be an infinity of new velocities brought
into the problem,

We now see that we have calculated the scattering,
or S matrix for this problem, which is simply a
6 X 6 maftrix, the elements of which tell how each
of the six possible initial permutations of the particles
on a line couple to each of the final six permutations
of the particles. To specify this 6 X 6 matrix
entirely, it is sufficient to write down how one
permutation, say 123, propagates into the six
possible outgoing permutations. This is shown in
Table II. The remaining elements of the 6 X 6
matrix may be derived by a relabeling of the particles
in the initial state,
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TazeLe II. Elements of the S matrix.

629

Wavefunction

Amplitude

Region

exp (k1 + kax: + ksxs)
exp (ka1 + koxe + kixs)

exp (kaz1 + kazz + kizs)
exp «(ksz1 + ks + kaxs)
exp ((kix1 + ksze + koxs)
exp Wkary + kizy + kszs)

exp i(kiwx1 + kaxe + ksza)

1 (Incoming Wave)
-1 - 8183

(51 4+ D2+ 1) (ss+ 1)

S2
(s1+1)(s2+1)(s5 4+ 1)

S2
(s14+1)(s24+1)(ss+ 1)
— $182
Gr+1D(s2+1)(ss+1)
— 8283
(s1+1)(s2+1) (55 + 1)

818283

(81 + 1) (82 + 1) (83 + 1)

Region I:iz; < 2; <3

Region 1I:
Region 1II:
Region III:
Region IV:
Region V:

Region VI:

41

T2

1

T2

Z3

Zs3

<$2<xa

<z <x3

<23 <2

<zs <x

<z <22

<$2<2}1

C. Rearranged Solutions

Although we have seen that there is no diffraction
in the free wave solution there is still the possibility
that a particle which is bound in the initial state
may be free in the final state.

Suppose we choose particles 1 and 2 to be bound
in the initial state. The boundary conditions at
infinity requires that there be no incoming waves
in particles 1 and 2. The only way this can happen
is to make both 7T, and R, infinite by choosing
8; = —1 so that the ratio of the amplitudes of the
incoming to the outgoing waves in particles 1 and
2 is zero. In the limit as s, approaches —1, the
ratio of 7', to R, is unity.

Let us evaluate the entries in Table I in this
limit, that is, we set 7', = R, = 1 and any product
of amplitudes which does not contain T, or R, is
set equal to zero. This result is given in Table ITI.
The amplitudes given in Table III may be verified
to constitute a solution.

In order to interpret the entries in Table III
we return to Fig. 4. The incoming 6 in Region I
now is at an imaginary angle of incidence with
respect to potential a. Its amplitudes to either
transmit or reflect are infinite and equal. This
transmission and reflection together represent an
incoming wave, bound in potential a. This incoming
wave is a decaying exponential in both the positive
and negative z direction and a propagating ex-
ponential in the y direction.

The outgoing 2 in Region II makes the same
imaginary angle to potential b as does the 5 in
Region I to potential a. This outgoing 2 together
with the outgoing 1 in Region IV form a bound-

state wavefunction in the direction perpendicular
to b which is propagating in the direction parallel
to b. Notice that all of the intermediate states,
such as the two in Region I tend to zero exponentially
at infinity in the region in which they exist.

There are three outgoing waves, a bound state in
potential b propagating up to the right parallel to
potential b, a bound state in potential ¢ propagating
up to the left parallel to ¢, and a bound state in
potential a propagating down parallel to potential a.

The interpretation in terms of particles may be
made without difficulty since we know that potential
b, for example, is the potential between particles
1 and 3 and if the outgoing wave is bound in po-
tential b, particles 1 and 3 must be bound together

TasiLe III. Amplitudes of waves in various regions for the
rearranged solution.

Wave
Type Region 1 Region IT Region ITI
6 1
5 1 T,
4 R2T3 + R3R2
3 R2R3 + RZTB R2
% R, R:R; 4+ R,T;
Wave
Type Region IV Region V Region VI
T, T,T,
TsT,

HNDWR OO

T:R;
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and particle 2 free. This would represent a re-
arrangement of our initial state which had particles
1 and 2 bound and particle 3 free.

We follow this line of reasoning and conclude
that the amplitude to leave the vertex bound in
potential a is the amplitude for no rearrangement
to oceur. This amplitude is given from Table III,

_ 83 32 — 83 _ 1'
.1, = (sa + 1)(82 + 1) T+ 1

The amplitude to go up to the right along potential
b and the amplitude to go up to the left along
potential ¢ are interpreted as the amplitudes for
the particles 1 and 2, respectively, to have been
replaced by the incoming particle 3. They are

T:R; = R,R; + R,T; = —Sz/(Sa + 1)(32 + 1),
since s; = —1;
i2i(k, — 1) ]sing = —1,

. _ +1ig
BILe = o — 19t

24k sin (60° +¢) _ V3ik, _ 1

8 =

g g 2

2k sin (60° — ¢) V3ik, 1

8 = = + —
g g 2

The corresponding probabilities are:
Probability that 3 replaces 1 = Probability that

3 replaces 2,
3ky* 9)"
( g + 4/
@Bk/g* + 1)

Probability of no rearrangement = W
" T

Note the following results of this rearrangement
solution:

(1) There is no ionization, that is there is no
amplitude for the final state of the system to be
three free particles. This is intimately connected
with the lack of diffraction in the free wave solu-
tions.

(2) There is no reflection. If some particle is
incident from the left in the initial state, some
particle will be moving to the right in the final
state with the same velocity as the initially incident
particle.

(3) Even if the incident particle is moving toward
the bound pair with an infinitesimal veloecity, it
has a probability of 4 to transmit through the
bound pair.
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D. The Bound State of Three Particles

In addition to the free wave and rearranged
solutions there is one totally bound state of the
three particles. The condition for this state is that
there be no incoming waves in any of the particles.
This is achieved by imposing the further condition
that ss = —1 on the rearranged solution. All of
the outgoing waves then have equal amplitude.
Their k vectors are pure imaginary and are pointed
along the bisectors of the angles of the six wedges.
Apart from the normalization factor, this wave-
function may be written as

¢ =nexp {—V2glle, — z
+ |5'32 - :1:3| + Ixx - 933|]}:

where z;, z,, 23 are the positions of the three particles
along the one-dimensional line. This wavefunetion
is totally symmetric to the interchange of any pair
of particles and its energy is E = —3g¢°.

All of the properties of the outgoing wavefunction
for the rearranged state and the bound state may
be deduced directly from the S matrix by simply
considering the behavior of the S matrix at the
values of k for which it has a pole when it is an-
alytically continued to complex or imaginary k.
The discussion in this section was carried out in
terms of the wavefunction for purposes of clarity,
henceforth we shall discuss rearrangements and
bound states from the analytically continued S
matrix.®

V. N-PARTICLE SOLUTION

In this section we will show that the corresponding
N-particle problem is exactly soluble, that is, the
problem of an arbitrary number of particles of
equal mass all interacting with one another via
equal-strength delta-function potentials.

The Hamiltonian is

2 N 2 N
H = ~oM §E+C ‘.\;:,-12 8z, — x,).
We will continue to use the units
E=M=1 V2C=—y.

8 We should note here that there is a universal peculiarity
bred into this problem which ig retained in all of the problems
we shall discuss subsequently. This peculiarity is that there are
no bound-state solutions where any two particles are moving
with zero relative velocity. From an inspection of the S matrix
it would appear that the condition s; = —1,8 = 0,8 = —1
is also a state which has no incoming waves. If one applies
this condition and looks at the wavefunction, one finds that
it does not satisfy the boundary conditions on the delta-
function surfaces. One can construct a wavefunction which
does satisfy the boundary conditions on the delta-function
surfaces by a careful limitingnprocess, but this wavefunction
increages exponentially at infinity in certain domains.
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It is apparently quite impossible to continue to
think of the N-particle problem as an equivalent
one-particle problem in a multidimensional space,
for the dimensionality of this equivalent space is
N — 1. An alternative point of view exists, however,
in which the difficulty of increasing dimensionality
may be avoided.

Suppose we consider the space-time plot of a
two-particle problem. The particles enter at some
momentum which dictates the slope of the line in
space—time. When the two particles collide they
either transmit or reflect, but since no new velocities
are generated, the space~time plot looks as shown
in Fig. 7. If particle 1 started on the left and particle
2 on the right, then the transmission coefficient is
the amplitude for particle 1 to come out on the right
and particle 2 to come out on the left. The reflection
coefficient is the amplitude for particle 1 to come out
on the left and particle 2 to come out on the right.

We should remark here that there is no intention
of changing our formulation of the many-particle
problem from the stationary-state type to that of
space-time. We intend only to argue that by
interpreting the space-time plots we may derive
all of the information which would be available in
a ray tracing argument such as we used in Sec. IV.

Now let us consider the three-particle problem.
There are two possible topologically different three-
particle space—time diagrams which are again shown
in Fig, 7. These two diagrams correspond exactly
to the bifurcation of the incoming plane wave with
which we dealt in the previous section. If the parti-
cles are ordered 12 3 from left to right, then the
diagram on the left is the diagram which occurs
when particle 1 strikes particle 2 first and the
diagram on the right is the diagram which occurs
when particle 2 strikes particle 3 first. It is now
obvious that there is one collision at each of the
three possible relative velocities and that there are
exactly three collisions between incoming and out-
going waves. As a matter of fact even the ‘“mirac-
ulous” property that s, + s; = s, is now evident
because

s = V2ilk, — ki)/g,
’ 8 = \/5’5(752 — ks)/g;
thus
8+ 8 = V2ilk, — ks)/g = sa.

What we have shown in the previous section is
that, as far as the outgoing waves are concerned,
it does not matter which of the two possible diagrams
is used, for both give exactly the same result.
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(b)

Fic. 7. Space-time plots for (a) two- and (b) three-particle
problems.

If we were to change one of the particle masses
or one of the delta-function strengths, the two
diagrams would not give the same result and
diffraction would occur.

In order to caleulate the amplitude of the outgoing
waves, let us invent two operators T%;** and R!*!
which are to operate on some permutation of
particles along the line. The indices I + 1 label
the position of an adjacent pair of particles which
are interacting, and ¢ and j label the &k vectors with
which the particles are interacting. The operator T
interchanges the particle in the Ith slot and the
particle in the [ -+ 1 slot with the amplitude ¢;; where

\/ii(ki — k;)/g — S,
V2ilk; — k)/g+1 8i+1

The operator R leaves the same particles in the
[l and I + 1 slot, with the amplitude r;; where

T = —1/(s:; + 1).

We denote the order of the particles by (1 3 2)
meaning that particle 1 is in the first slot (that is,
it is to the left of all of the other particles), particle 3
is in the second slot, and particle 2 is in the last
slot. Thus, for example

1:(132) = [812/(512 + 1)](312),
R::(132) = [—1/(s:z + 1)](132).
We use the three-particle diagrams of Fig. 7

t"i =
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F1a. 8. Four-particle space~time plot.

to tell us in what order these operators work. For
example the three-particle diagram on the left in
Fig. 7 implies the order

(T3 + RT3 + BR)(Th: + Ri),
which operates on some linear combination of the
initial permutations of the three particles.

The three-particle diagram on the right in Fig. 7

implies the order

(T3 4 RE)Ty: + Ri)(Ta + Rx).
It is easily verified that these operators on any
permutation of the particles give exactly the same
result.

If we go on to four particles it will require fourteen
diagrams to fill all space, and there will be six
operator products going from incoming to outgoing
states. We will now show that the outgoing waves
are the same from each of the possible diagrams.

In order to do this let us start with a typical
four-particle diagram such as the one shown in
Fig. 8. This diagram implies the sequence of six
operators

23 )34 23

12 23 034
24 V13 12 14 V24 V34,

where
I1t+1 1i+1 i+
0.'1' = 2 i + Rl'i .

Suppose we now imagine moving the bottom line,
that is, the %, line, up the page. We generate a
new sequence when this line passes the collision
between k&, and %, indicated by the dotted line in
Fig. 8. This second sequence of collisions gives
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exactly the same result as the first because all we
have done is change the order of operators and the
diagram in exactly the way we changed them in
the three-body problem. If we continue to move
the k, line up the page, another new sequence will
be generated when the k, line reaches the position
indicated by the second dotted line. This sequence
involves an interchange of the operators O;; and

2% which commute because they have no slot in
common. Thus this diagram gives exactly the same
result as do the first two.

A continuation of this argument will show that
every possible diagram contributes exactly the same
outgoing waves. The argument does not depend on
the number of particles, for all that is ever required
is to move lines across intersections or to move
intersections past commuting intersections. In order
to show there is no diffraction, one must show that
the amplitudes for every intermediate state which
may be reached by more than one route are equal.
The argument for these states proceeds in exactly
the same way, and requires no more than the opera-
tors discussed above.

VI. N-PARTICLE CALCULATIONS

A. The Three-Particle Problem

We are now in a position to ealculate amplitudes
for various N-particle processes with relative ease.
We could now draw some convenient sequence
diagram with N % lines, write the appropriate op-
erator sequence, and generate the S matrix by the
operator rules of the preceding section. We know
that we may pick any sequence whatever to generate
the S matrix, for all sequences yield the same
result. If it is desired to study scatterings in which
particles are bound to one another we simply take
ratios of elements of the S matrix where the elements
are evaluated at the poles which correspond to the
desired bound state.

In order to make the method more clear, let us
redo the three-particle problem by the methods of
Sec. V.

Let us evaluate the three-particle S matrix by
using the space-time sequence diagram on the left
in Fig. 7. We will assume that the incoming wave
has the particles in the order (123) from left to right.
Now

8(123) = (T3 + RT3 + RE)T1: + Ri2(123)
= (T;: + Rég)(ng + ng [£:2(213) + 7,,(123)]
= (T;: + Rég)[t13t12(231) + 7158,2(213)



ONE-DIMENSIONAL

+ t,5112(132) + 75715(123)]
= (lygT1atia + T1271a712)(123)
+ (rastiatiz + fogliars)(213) + (rastyari2)(132)
+ 7o3tiati2(213) + fagtiar1a(812) + thafistha(321),
if we let

812 = 8, 823 = 8s, 813 = 82.

The elements above are exactly the same as the
elements of the S matrix as given in Table II.

Of course, the other sequence diagram of Fig. 7
gives the same result. As we have seen previously,
all of the scattering amplitudes for all possible
processes as well as the bound-state energies may
be calculated from analytic continuation of the
S matrix.

The evaluation of S matrices for more particles
is a straightforward but tedious process. We will
consider here some processes whose amplitudes may
be calculated without calculating the entire S
matrix.

B. Four-Particle Processes

Suppose we consider the scattering of a pair of
bound particles incident on a second bound pair
of particles. We will denote the incoming state as

1(12)(34)

where the (12) indicates that particles one and two
are bound and the order inside the “ket” indicates
the order along the one dimension from left to right.

Let us first calculate the amplitude for the bound
aggregates to pass through one another, that is,
for the outgoing state to be

((34)(12)].

We know that the wavefunction is symmetric
to the interchange of particles 1 and 2, for the
single bound-state wavefunction of two particles
bound by a delta-function potential is symmetric.
If one of the particles has momentum %, and the
other has momentum %, we know that

V2 ik, — k)/g = —1,

for this is the condition that the two particles be
bound. Similarly the condition

V2 ilks — k)/g = —1

is the condition that particles 3 and 4 be bound. Let
V2ilky — ks)/g = s.

If the bound aggregate (12) is to pass through
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(84), clearly both particles 1 and 2 must transmit
through particles 3 and 4. The amplitude for
particle 2 to transmit through particle 3 is

V2ilk, — kg _ _s
'\/5’5(’92—]53)/94'1 s+ 1
The amplitude for 2 to transmit through 4 is

(42 | 24) = (s — 1)/s.

(32| 23) =

Similarly,
@BL[13) = (s — 1)/s,
41 |14) = (s — 2)/(s — 1).

The amplitude for all four of these events is the
product of their respective amplitudes and is the
amplitude for the aggregate (12) to pass through
the aggregate (34). Thus,

(39)(12) | (12)(34)) = (s — 1)(s — 2)/s(s + ).

Let us write this amplitude in terms of the energy
in the center-of-mass system. By use of the formula
in the Appendix which relates the energy to the
s variables we can write

—4E,./9* = [s — 1* + 1.

The factor +1 on the right-hand side is just
the binding energy of the two pairs of particles,
and in this problem it is more convenient to rep-
resent the solution in terms of the kinetic energy
of incidence of the bound aggregates in their center
of mass; thus if we remove the binding energy term

—4E/¢" = [s — 17,
s =1+ 2E/g.
The amplitude for transmission is then

(2iE}/9)@iE} /g — 1)
@B}/ g + 1)@ + 2EYgy

and the probability of transmission is

E/g®

/9 +1

So the probability for the (12) aggregate to pass
through the (34) aggregate is zero at zero energy
and monotonically increasing to unity at infinite
energy.

We have several other possibilities for outgoing
states. It is possible for one of the particles of the
bound aggregate (12) to switch places with one of
the bound particles of the aggregate (34). One way
this could happen is for the first interaction to be a
reflection and for the last three interactions to be

((34)(12) | (12)(34)) =

(34)(12) | 12)3)|* =
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transmissions. Thus we have the amplitude

(13)24) | (12)BY) = (s — D(s — 2)/s* (s + 1),
which yields the probability

_ 4E/g" )
(4E/¢* + 1)4E/¢* + 4

This probability is zero both at zero and at
infinite energy. It is a ‘‘resonance’” probability
having a maximum at E = %g° where the probability
of the production of the ((13)(24) | state is $.

There is no easy way to calculate the amplitude
for the reflection of the (12) aggragate off the (34)
aggregate; one must return to the sequence diagrams
and analyze the S matrix at the appropriate poles.
We will simply state the result

((12)(34) | (12)(34)) = 2(s — 2)/s’(s + 1),

K(13)@4) | 12)EMI*

K268 | (26N = T T TE T D

C. The Many-Particle Bound State

From the four-particle amplitudes worked out
above, we can see that there is a four-particle
bound state. Every element of the S matrix is
proportional to 1/[s(s + 1)]; thus if we let s = —1
there are only outgoing waves, and we will have
a bound state. It would also appear that s = 0
would give a bound state, but as we have seen in
the three-particle case there are no solutions where
two particles have zero relative velocity.

The condition for the four-particle bound state is

V2ilky — k) _ V2ilks — ks) _ V21l — ko)
g g g
= —1.

One may show using the many-particle S matrix
that the condition for an N-particle bound state is

V2ilk; — ki)/g = =1 =
for all j.

Using this condition we may evaluate the energy
of the N-particle bound state using the formula
derived in the Appendix which relates k; — k.,
to the internal energy,

5-§ T B

= —&(@NW* — 1).

There is no saturation; the energy decreases as
N®. The wavefunction is symmetric to the inter-
change of any pair of particles and the average
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density of particles in the vicinity of the center
of mass is of the order of Nyg.

D. Scattering of One-Particle by N — 1 Bound
Particles

Ag a final example of an N-body calculation let
us consider the scattering of one free particle by
N — 1 bound particles. By the usual method the
relation between s and kinetic energy in the center
of mass is found to be

s 2NE N -2 _ V2l —k)
W -T2 g

The amplitude for the incident particle to pass
through the bound aggregate of N — 1 particles
is the product of its amplitude to pass through each
particle individually, and is

@--- MO |2 --- N))
_ s \fs—1\fs — 2 [s — (N —2)]
—(s+1>( s )(s—l).”s—(N-—S)
_s—(N-—-2 _2NE}Y/gWN -1 — 3N -2)
T s+1 T 2(NEY/gWN — D'+ IN

The amplitude for the incident particle to replace
one of the bound particles is the same for all bound
particles, and is

(13 --- M@ [ ME --- M)
= {124 --- N)3) | (D@ --- N))

- (FHeY) - =02
2i(NE)}

_[ -1 }m——nr%w—”
R )
We noted previously that one of the peculiar
things about the three-particle solution was that
the amplitude for the incident particle to transmit
through the bound aggregate was nonzero even at
zero energy. Here we see that this transmission
amplitude is always nonzero for one particle incident
on N — 1 particles, and in fact the amplitude to
transmit approaches 1 for infinite N. Thus in the
limit of large N nothing happens to the incident

particle; it simply passes through this extremely
dense bound aggregate as though it were not there.

VII. SUMMARY

In the Introduction we stated that one of our
objectives in studying exactly soluble N-body prob-
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lems was the illustration of physical effects. We
have succeeded in this objective to some degree,
for we have seen a number of the possible effects
outlined in the Introduction. In the infinite-strength
delta-function case we have seen particles redis-
tribute their energy among the particles in a way
which cannot be understood by a sequence of the
two-body interactions. For infinite-strength delta
functions we have illustrated the possibility of
rearrangement of particles and the existence of
N-particle bound states.

On the other hand we have not been able to
illustrate any inelastic processes which involve dis-
association or recombination of particles out of or
into bound states. We have, however, learned to
associate these processes with some generalization
of diffraction processes in a multidimensional space.
This multidimensional diffraction must be dealt
with in any successful approximation method so
at least in this sense we have provided some insight
into the approximation methods which might be
used in more physical problems. Moreover, we now
have an exactly soluble problem involving a re-
arrangement of particles which can be used to check
the existing approximation methods, and perhaps
lead to a better understanding of the lack of con-
vergence which seems to be implicit in problems
of this type.’

Finally one must wonder about the statistical
mechanics of a one-dimensional system of particles
of equal mass which interact through equal-strength
delta-function potentials. If the particles were bosons
or distinguishable particles and the potentials attrac-
tive, the problem would make no sense, for the
system would collapse into the N-particle bound
state independent of temperature. The case of
repulsive bosons has recently been worked out by
Lieb'® who, independent of this work, constructed
the totally symmetric wavefunction for an arbitrary
number of particles of equal mass interacting via
finite-strength, repulsive delta-function potentials.
The situation with attractive or repulsive fermions
remains open and should prove to be an interesting
area of further research.
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APPENDIX. DISCUSSION OF COORDINATE SYSTEMS
FOR N-BODY PROBLEMS

Consider an N-body Hamiltonian of the form

h? N 1 62 N
+ Z;>E vz — ;).

2 &1 M, oz}

We will take the z; to be one-dimensional vari-
ables, but the results we derive will be independent
of dimensionality and may be extended to more
dimensions by simply substituting the vector
quantities V3 for 8*/9z? and x; for z..

We wish to make a change of variables which
will allow us to separate out the center of mass of
the entire system. In addition we will find that a
more unified view of N-body problems is attained
if we pick a “rationalized” coordinate system so
that the second derivative terms in the new variables
all have the same coefficient. The following has been
shown to be such a coordinate system'''*:

_WMP(
& =an + My &~ Ta),

H =

5, = Mg(Ml + ]llz)i (Mﬂl + M.z,
(M 4+ My 4+ M)\ M, + M,

n 3 n
M?.H(Z M.’) ZM.'xi

i=] im]l

—$a>;

zZ, = - 3 - — Zan| , n <N,
(Sn) [ Zo
i=1 i=1
N N 3
ey = EM,Q:./(ZM,) .
=1 i1

Pick the first new coordinate to be the relative
coordinate between any two particles multiplied by
the square root of the reduced mass of those two
particles. Pick the second new coordinate to be
the coordinate of a third particle relative to the
center of mass of the first two multiplied by the
square root of the reduced mass of particle three
and the sum of the masses of the first two, ete.
The last coordinate is the center of mass of the
whole system multiplied by the square root of the
sum of the masses.

We can verify that this transformation has the
property that the coefficients of the new second-
derivative terms are equal by observing that the
transformation between z and z can be written as
an orthogonal matrix times a diagonal matrix, where

11 D, W. Jepsen and J. O. Hirschfelder, Proc. Natl. Acad.
Sci. U. 8. 45, 249 (1959).

12 J. O. Hirschfelder and J. 8. Dahler, Proc. Natl. Acad.
Sci. U. S. 42, 363 (1956).
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the elements of the diagonal matrix are the square
roots of the masses of the particles. That is,

z = UMz,
where

MJ’ = M%B,—,-,
and

U= attyorh /(3 ) (5 o), w>n2i,
—U§M>/(1;*

e ()

U.=0, <>n+1.
The operator 3/dz transforms by the rule
8/dx = (M*U’) 8/0e.
Thus the quadratic form

AV
(ax) (M) 8 .Z.;M 6:1:,
N 62

_3_ ] -1 i/.i__
- () mranaew - 5

5
=1 92,

l];n+l =

To find the arguments of the potentials we invert
the transformation between x and z for form x; — ;.
The result is

— — M_—i—_lli);
T ‘( MM,

()
(M. + Mi)*(;i M,)*

Zn

+

Zi-1
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e
M; + ﬂli)‘(jZ1 Mz)}

Bi—1 |*

The factor of the square root of the reduced mass
is introduced so that the sum of the squares of the
coefficients of the 2’s add up to unity. These co-
efficients may be looked at as the ““direction cosines”
of the potential in the multidimensional space.

Another result which we shall find useful is the
transformation law between moments in the two
systems. This transformation is

8/9z = [UMY™] 8/0z,
= U(MH™'P,,
which leads to

M., _
() 5

] n=1

P, =

zn+:

n<N.

The total energy of internal motion is

2 N—-1

E=—ZP

n=1

We shall need to calculate this energy for the case
when all of the masses are equal. For convenience
we set h = 1 and M = 1. This leads to

E = NE I:T(,L—:_T); 2 (P, - Pm,):lz,

n=1

which can be written

£ 3 Rawern | S

where
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Some relationships of the nonlocal field operators developed by Siegert et al. and the usual free-
field operators are obtained. The interaction Hamiltonian derived with the help of these relation-
ships is compared with the pseudopotential recently obtained by Liu and Wong. A study of the
fluid dynamical equations at extreme low temperature has been made.

1. INTRODUCTION

ECENTLY Aizu, Dell’Antonio, and Siegert'"?
have developed a new algebra for bosons inter-
acting as hard spheres. The field operators of their
new algebra do not have usual commutation rules.
In this paper we have developed some relationships
between their nonlocal and the usual field operators.
These relationships were then used to obtain the
pseudopotential of the many-particle system. It is
found that the present method gives the same form
of pseudopotential derived by Liu and Wong
recently, except for the presence of a projection
operator. The purpose of the projection operator is
to eliminate those solutions where the Liu and Wong
pseudopotential alone does not replace the hard-
sphere interaction. These particular solutions were
shown clearly in the two-body problem by Liu and
Wong® [Eq. (27)]. If we expand the projection
operator in a free-field-operator representation, we
will obtain terms of the nature that can be called
three-body and higher-body pseudopotentials. We
must however keep in mind that there are many
ways in which we can expand the projection operator.
Therefore, the form of the higher-body pseudo-
potentials are actually not unique, and hence not
meaningful to be considered separately.

In Sec. 2 we derive some algebraic relationships
between A-D-S field operators and the usual field
operators. The derivation of the generalized many-
body pseudopotential form the main part of Sec. 3.
A comparison of the Liu and Wong pseudopotential
and the present many-body pseudopotential is also
given. In Sec. 4 we rederive the equation of motion
of a free-field operator, previously obtained by
A-D-S with a slight difference, the difference being

* Work supported in part by the United States Air Force
Research Office and the National Science Foundation. The
early part of this work was supported by the Office of Naval
Research.

t Part of this work was submitted as a Ph. D, dissertation
at Northwestern University.

1 A. J. F. Siegert, Phys. Rev. 116, 1057 (1959).

? K. Aizu, G. Dell’Antonio, and A. J. F. Siegert (private
communication), herein referred to as A-D-S.

3 L. Liu and K. W. Wong, Phys. Rev. 132, 1349 (1963).

that A-D-S consider the equation of motion of a
nonlocal field operator, whereas we consider the
equation of motion of a usual free-field operator.
In the last section, Sec. 5, we study the dynamical
equations of a superfluid at extreme low temperature.
It is found that instead of purely a continuity
equation we have an extra term similar in form to
the Boltzmann equation. This is reasonable because
the collision of the particles will give rise to a
change of the occupation number of the degenerate
state of the system. The superfluid equation obtained
with the present pseudopotential is also a modifica-
tion of the London* equation. We have a frictional-
force term from the surface interaction between
spheres. The importance of the presence of these
extra terms obviously depend on the density of the
system. It is clear that such terms will not arise if we
use the Lee, Huang, and Yang® pseudopotential. A
study of the solutions of these hydrodynamical equa-
tions using the L-H-Y pseudopotential has already
been done by Wu.® In this paper we do not repeat
his work.

2. ALGEBRA FOR THE NONLOCAL FIELD OPERATORS

In this section we repeat some algebraic identities
which are in A-D-S for the sake of completeness
and convenience, since most of these identities will
be used in the later sections.

In order to solve a many-particle system with
impenetrable spherical core, diameter a, we have
essentially to solve the many-particle Schrodinger
equation with the interparticle boundary conditions

By, LX) =0; X — x| <a

and
lim q>N(x19 ccc oy XNy VN) - 07

Ixi—x;l—a
for any pair of position vectors x;, x; and energy

¢+ F. London, Superfluids (John Wiley & Sons, Inc., New
York, 1954), Vol. II, pp. 129-130.

5 T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106,
1135 (1957), herein referred to as L-H-Y.

¢ T. T. Wu, J. Math. Phys. 2, 105 (1961).
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E(vy). Siegert' has shown that we can define a
nonlocal field operator in Fock’s representation by
its matrix element:

(”N—x N’(XN VN) = N*f f[ d3x.-4>§_1(qu_;; vx—1)

i=l

X ®y(gn-1X; vw), @.1)

where

gy-1 = X4, Xy, 000y Xyeys

It is clear that the nonlocal operators span a closed
linear subspace Hpy, where all configuration coor-
dinates |x; — x;| > a of the Hilbert space H. There
exists a linear mapping H — H such that the non-
local field operators can be defined in terms of
the standard free-field operators ¥,(x), ¢%(x) as
follows:

¥(x) = P(x)¢0(x),
Vi (x) = ¥ix)P(x),

where P(x) is a projection operator

P = 3 [ Tl dsCtaibra), @3

2.2

and C(xqy) is a step funetion,
Clxgy) = C(xxy) « -+ Cxxy)C(xix,) - - -
X C(XIXN) .. C(XR_IXN),

Clxx,) = {1 [x: — x;] > aq,

0 otherwise, ©.4)

CO) = C) = 1,
Pulgw) = V)™ TT v [0XO] IT votx).  (2.5)

For later convenience we shall rewrite P(x) in
the following form:

P(x) = P + A(x), (2.6)

where

©

P == Ef I;IdsﬁiC(QN)PN(QN):

N=0

2.7

and

=2 G [ [ v

fomi

x Il vy dz,  @8)

where M is the maximum number of particles of
diameter @ + ¢ (¢ > 0 — 0) one can pack into a
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sphere of diameter 3a, and 8, is the volume bounded
by the surface |x — x,| = lim.., a + e Equation
(2.6) has already been proven in A-D-S. However,
we shall give in our opinion a much more straight-
forward proof in Appendix A, It is now straight-
forward to show the following algebraic identities:

PP(x) = P(x); PA(x) = A®®),
'@ = (=)@, n2>1,
[P), P(x)] = [A(x), Ax)] = 0,
Yo@)P(E) = Cy)PEPF) oY),
PEWE) = CayvimPEPRX),

and commutation rules
[¥(x), ¥&x)] = [¥*&), ¥*&)] = 0,
YE)YE) =0 for
YY*(x) = 8 — x)P®) for x — x| < a.

2.9

Ix — x'| < aq, (2.10)

For other properties of these nonlocal field op-
erators, we refer the reader to A-D-S.
3. THE MANY-BODY PSEUDOPOTENTIAL

From the definition of the nonlocal field operators
given by Eq. (2.1), and using the unit 2 = 1, 2m = 1,
we can simply write the many-body Hamiltonian
with periodic boundary conditions as follows:

H=— f Fop* )V (). 3.1)

Using the algebraic identities (2.2), (2.6), and
(2.8), we obtain

H=— f A"y %(x) VP(X) o(x)

+ [ v ¢ dnarweie)

X —x

X =V |x = x'| PEROPE)¥E)¥(x). (3.2)

The proof of Eq. (3.2) is given in Appendix B.
Since

[ @2 § degx - x)E=F v - Vgt — )

= lim 2 f d’z d’2’f(x — x') 8(|x — x| — @)

=0

3 s
X [6 IX - X’} g(x - )]Ixux'i-aa}-e, (3'3)

where e is positive, we can rewrite H as
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H=— f P24 VP E)Yo(x)

+1im L [ @ drus@use) o ~ o)

0 @

X [% TP(X)P(XI)‘//O(XI)!&O(X)} )

r=ate

(3.4)

with r = |x — x’| and 9/9r defined with x + x
fixed. This many-body Hamiltonian is very much
similar in form to the Hamiltonian given by Liu
and Wong® (Eq. 3.2). The main difference between
the two forms is the presence of the projection
operator P(x) in (3.4). Actually, Liu and Wong
have already mentioned in their work that their
form of the pseudopotential does not replace the
hard-core interaction for all scattering energy of
the system,

It is clear that in order to replace the hard-core
interaction we need, in addition to the Liu and
Wong pseudopotential, a projection operator which
will force the wavefunction to vanish inside the core.
We can expand the projection operator in some
specific representation; however, it has been shown
clearly by Liu and Wong that the projection op-
erator actually only affects a discrete set of scattering
energy. Hence, a poor choice of expansion of P(x)
will not only not improve the quantitative calcula-
tion of a many-body system, but may actually make
the problem meaningless. We might be able to
choose a projection operator in momentum rep-
resentation which will give the exact solution for
a two-body problem, but such a projection operator
cannot be extended to the many-body system. It
may seem to be possible to obtain complicated
many-body pseudopotentials by expanding P(x) in
some specific representation. However, as we have
said before, the form of P(x) is not unique and it
acts only on a discrete set of solutions superimposed
on a continuum. Any pseudopctential obtained this
way has no physical meaning and is not unique.

4. THE NONEQUILIBRIUM BOSE GAS

In order to study the motion of a single hard-core
Bose particle put into a system of hard-core Bose
gas at equilibrium and nearly completely degenerated
into the zero-momentum single-particle state, we
shall have to define the time-dependent nonlocal
field operator also by its matrix elements, and
assume a time-dependent state function o(xt) for
the single particle:

<VN—1 I'l’(Xt)l ”N) = N*f 1:11 daxiq:’.;\kr—l(QN—l;VN—-lt)

X @N(qN_lx; VNt). (4.1)
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where &y (qy; vyt) is the symmetrized time-dependent
many-particle wavefunction satisfying hard-core
boundary conditions.

It is easy to show that the algebraic relationships
derived in Sec. 2 are also valid in the time-dependent
case. Hence, it is straightforward to show that the
Hamiltonian can be written in the following form:

H=— f PrAE) VP& Yol(xt)

+ lim% f P P YAEDVARD 8¢ — a)

€0

x | & P oPaovix oy | *.2)

r=g+e

The equation of motion of the field operator
Yo(xt) is therefore

z:% Volxt) = — VP (xt)¥o(x)

+ lim% f Py ) 8 — a)

«—0

X [% rP(x't)P (Xt)‘po(x’t)'//o(n):l

r=a+é

- fdsx' &)V PP ) o(x' 1)

X (P(xf) — 1)¥u(xl) + lim é [ @ @
X $HE'OYEEE) 8¢ — a)
x| 2 e op@ina s |

X (Pxt) — Diul(xd),

where

ri=ate

4.3

o= lxl — x/rl_

The equation of motion of a physical field operator
given in A-D-S differs from the equation of motion
of a usual free-field operator given by the above
equation in the presence of the term

~ [ @ v PE O P — o)

+ Iimt—ll f &z’ &’ YA DYEEL) 8¢ — a)

e—0

X [5‘-:— r’P(x”t)P(x’t):po(x”t)‘l/o(x’t):l

X (Pxt) — Dyo(x?). 4.4

It is quite clear that this term will be important
only when we have a densely packed system, where

r'=ate
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we have to take into account instantaneous many-
particle scattering processes. For our present pur-
pose, we shall consider a dilute Bose gas and replace
P(xt) by unity, which is equivalent to using the
Liu and Wong pseudopotential. The equation of
motion (4.3) reduces to

i Yolxl) = —V*Yu(x)

+ lim 2 f d’z’y%(x't) 8(r — a)

0 @

x | L v ow | @)

r=a+e¢

Let us consider the case where the degeneracy
into the single-particle state is nearly complete.
The parts of ¢* and ¢, corresponding to this one
state may be singled out:

Axh) = D) + ¥ (z),
Yo(xt) = Yolxt) + Pi(xi),

(4.6)
where
F(xt) = Q7 lat(e*(x1),

Yoxt) = Q7 ao(te(xt),

and @ is the volume of the box, ¢(xf) is the single-
particle wavefunction, such that a%(t) and a,(t) are
defined as follows:

4.7)

att) = o [ Payraietar), s
4.8

a) = 07 [ dopate@d.

In the present approximation, we shall restrict
ourselves to consider only the degenerate single-
particle state. The equation of motion of this state
is therefore

i 2 anltlolxt) 22 — () Volx)
+ lim po(9ao(®) 2 [ @'t o — o

X [g; r¢(x’t)¢(xt):| , (4.9)

r=ag+e

where
Po(t) = No(t)/Qs

No(t) = a¥(f)ao(®).

Equation (4.9) can be rewritten as

(4.10)

i20(8) 2 o(xt) ¢ —iplxt) g ault) — aa(t)Vp(xt)

K. W. WONG

+ lim pot)as(t) 2 [ @wpray

X 8r — a)[-g-r rgo(x’t)go(xt)] (4.11)

r=gte

Even in the present approximation, we observed
that the equation of motion of the single-particle
wavefunction is a nonlinear integro-differential equa-
tion, whereas the same equation obtained by using
the I-H-Y pseudopotential is much simpler. Wu®
has obtained this equation using the L-H-Y pseudo-
potential. Making use of the Hamiltonian given by
(4.2) we obtain

i{0au()/91] = 3(as(t) + 4rad(BpoBac(t),  (4.12)
where
50 = o [ Vo), @19
and
3(8) = hgl Q! 2:{12 f &’z &’z o* (xt)p* (x'1)
X 8r — a)[%_ r¢(x't)¢(xt)1_m (4.14)

The equation of motion for the single-particle
wavefunction ¢(xtf) can now be written in a form
similar to Wu's:

iawa(f D)~ [~V — trapo(§3() — FOle(x)

+1im 2 (9 [ drwd o — 0

X [g; rqo(X’t)so(xt)] (4.15)
The present equation differs from Wu’'s mainly
in that we have an integro—differential, equation
whereas he has a differential equation. We shall
show in the next section that this difference gives
some extra terms which have physical meaning.

r=ate

5. DYNAMICAL EQUATIONS OF A SUPERFLUID

The dynamical properties of a dilute hard-core
Bose gas at extremely low temperature are contained
in Eq. (4.15).

Let us rewrite ¢(xf) in a form that will be more
convenient:

p(xt) = A",

where A(xf) and 6(xt) are real functions.
The velocity of a particle is usually defined as

6.1
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v(xt) = 1(eVe* — 0*Vo)/o*e
2V o(xt).

From this definition of v it follows that the fluid
is irrotational.
The number density of the fluid is given by

pxt) = po()A*(xt). (5.3)

Considering the imaginary and real parts of Eq.
(4.15), we have

(8/aAx) = — (VA

(5.2)

—2AVO-(VA) +Ime, (5.4
and
—(% 0(xt)>A(xt) = —V?4 — drap,()3() A

+ (V0’4 — 3()A + Re g, (5.5

where
. 2 3

L£xt) = lim = py(d) f &’ AX'l) 8(r — a)
-0 @

X {A@®@ )AL + aAx)d’ AX'E) + aAx')IA(xL)
+ A )AGD0Y) + 8 0E' )]} yeese.  (5.6)

The prime indicates the variable x’.
It is now straightforward to show that from
Eq. (5.4) we obtain

apé}tlt) = A%xi) 3_1’5%2 — V- oxt)v(xi)

+ 2p0,() A(xt) Im L£(x¢). 6.7

Equation (5.7) gives the well known Equation of
Continuity, except for an extra term

A*(xt)[0p0()/01] + 2p0(H) A(xf) Im £(xt),
where
2p0() A(xt) Im £(x?)
— lim f P M) &h) o — a)

x'—x
a

X {p*(xt)p*(X’t) . [V(X’t)—v(xt)]} (5.8)

r=at¢
Equation (5.7) is of physical interest. Since we
are only considering the motion of a single-particle
density in the degenerate state, it is clear that we
would have sink and source due to particles in the
excited states. Therefore, instead of the equation
of continuity, we have a collision term (5.8) and
a term due to the change of the occupation number
of the degenerate state. This equation is actually
very similar to the classical Boltzmann’s equation.
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From Eq. (5.5) we obtain the usual hydrodynamie
equation for a superfluid,

av(xt)

plxt) =3~ = 20(x) V[p~Hxt) V7 p}(x1)]

— pED[v(xt)- V]v(x?)
— 2p(xt)V A7 (xt) Re £(x0), (5.9)
where

2p(xt)V A7 (xt) Re £(xt) = [4p(xt)/a]V

X lim f & p ) ' t) 80 — a)

e—0

X [pMx')pt(xt) + ap'(xt) 9’ pt(x"0)
+ ap(@'t) 3o E)],mar e

We define the static pressure as:

(5.10)

VP = 2’% v lim [ &'px)

=0

X p'@'t) 8 — A)[p* @ DP'@)]rmare.  (5.11)

The static pressure is approximately 4rap®(xf) when
g is small.

Let D/Dt be the Lagrangian derivative. Equation
(5.9) can be rewritten in a more familiar form,
1o(x)[Dv(xt)/ Dt]

= —VP + V(' V) +1, (.12

where

Iat) = —lim 4px)V [ /o &) x't) 6 — a)

-0

X [pMxt) 90} x't) + p'@'t) 3p* @] rcare.  (5.13)

I is an extra term to the usual London* superfluid
equation. Actually I is a frictional-force term
similar to the Maxwell stress tensor on a conductor.
The importance of the presence of these extra
terms is negligible for a very dilute system, but
might be of importance in the case of liquid helium II.

APPENDIX A

To prove that P(x) can be written in the form
given by Eq. (2.6), we recall the definition of P(x),
Eq. (2.3),

© N
P@ = 3 [ Tl o C@anPulan. (A1)
=0 i
The step function C(xgy) can be written as

Clxgy) = I_I1 1 — AEx)]IC(gw), (A2)



642

where A(xx;) is a step function defined as follows:

Alxx) = {O for |x — x| > a, (A3)
1 otherwise.
Hence, P(x) can be written as follows:
P(x) = P + A(x), (A4)

where P is defined by Eq. (2.7).
The operator A(X) can be simplified easily,

10 = 3 [ T 20
X ;Zlu( )Nz)'HA(n‘)]

11 a6y [ TI st

=1

P> ﬁ) N II &',
X {:C(Qzﬁﬂv—z) H YA Py-1(qh-1) H Eba(xn)]
i-(-l-i)—-f f ,]_—_Ildax,[mof 11 d®!

i=3 =1

X Claigh) H V)P y(gh) H ‘Po(xm):} (A5)

where M is the maximum integer such that
¥ Axx,)C(gs) # 0 and S, is the volume bounded
by the surface [x — x,| = lim.ca + ¢ ¢ > 0.

APPENDIX B
We recall Eq. (3.2). We have

H = ~ [ P30V PEY)

+ f d*z’ 3§ doi(@)eiE) =X st’(x’)\l/(x)

+ S G [ [ @ I vepv?

X 11 vy d'z. (B1)

The term
G| vw

X II At iva II Y)Y E) d'z;

im]

vanishes, since

i(—},)—fdxf 1®)

K. W. WONG

X II Vals Hive H Yx)Y(E) &%,

- 1)' f d3w155 dos f VEEY*(x)

.V II YEIWE)Y(E) &

M

1=

):-_j,.,u

B =2 (l (__ )1)' f}x—-x i£a dsx daxl(v‘l/t(x) 'p*(xl)

x [ T vt I] vie) @) 790vte) B2)

= 0.

The surface integral term vanishes because we have
the condition Y(x;)¢¥(x) = 0 for |x; — x| < q,
where j % 1. The volume integral terms vanish
because V¥ (x,)¥(x) vanishes everywhere inside the
volume |x;—x|<a except on the surface |x,—x|=a
where it is assumed to be bounded.

Therefore, the interaction term can be written
simply as

f d*z’ éﬁ do PR 2=

V). (B3)
However, since

hm (uN“z ¢ YX)] vy — 0,

jx~x*}

B4

we can multiply Eq. (B3) by a test function f(r)
in the following manner:

[ § anviwvicr ==X v

af( )
X $&)WE).  (B5)

In particular, the function f(r) is chosen to be r.
In order to fix the function f(r) we have made use
of the method of Liu and Wong in treating the
two-body problem.
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The properties of the Percus—Yevick approximate integral equation for the pair distribution fune-
tion in classical statistical mechanics are examined for the class of pair potentials consisting of a hard
core plus a short-range tail. For one-dimensional systems, some elementary theorems of complex
variable applied to the Laplace-transformed equations enable one to express the direct correlation
function in & very simple form, one which becomes explicit and trivial in the absence of a short-range
tail. In the presence of the tail, the direct correlation function satisfies a (coupled) integral equation
over a finite domain, The impossibility of a phase transition in one dimension is strongly indicated.
Analysis of the case of three dimensions proceeds similarly, but is complicated by the appearance of
essential parameters other than the density and compressibility. The character of the direct cor-
relation funetion is qualitatively unchanged. Principal differences in three dimensions are that a
phase transition is no longer prohibited, and the pair distribution function cannot be reasonably ex-

pressed as a sum of nth-neighbor contributions.

I. INTRODUCTION

EVERAL approximate integral equations have

been proposed for the pair distribution function
in classical statistical mechanics. On the basis of
numerical comparisons' made so far, the Percus-
Yevick (PY) equation® is the most successful of
these. Furthermore the PY equation has been
solved exactly for hard spheres,®'* representing the
first nontrivial system solved for any of these
integral equations. In the solution for hard spheres
a factorization of the PY equation occurred, which
in the original method of solution appeared as a
lucky accident. This suggested a more detailed
study of the PY equation, exploiting the fact that
it is a quadratic integral equation.

The method we have used consists of the applica-
tion of some elementary theory of the functions
of a complex variable to the Laplace-transformed
PY equation. We consider the case of hard spheres
with a potential tail which becomes identically zero
beyond a distance a which is less than the hard
sphere diameter R. The potential tail is assumed
to be finite or have only integrable singularities,
but is otherwise arbitrary. For this system we find
a factorization of the PY equation, which may be
used to eliminate the pair distribution function,
leaving an equation for the direct correlation funec-

* The work presented in this paper is supported by the
AEC Computing and Applied Mathematics Center, Courant
Institute of Mathematical Sciences, New York University,
under Contract AT(30-1)-1480 with the U. S. Atomic
Energy Commission.
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2 J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958),

8 M. S. Wertheim, Phys. Rev. Letters 10, 321 (1963).

¢ E. Thiele, J. Chem. Phys. 38, 1959 (1963).

tion alone. In the case of zero tail the solution for
hard spheres is obtained in a simple fashion. For
the case of nonzero tail the equation for the direct
correlation funetion C(x) is expressed in a form
believed suitable for numerical computation. The
method used clearly shows the similarity as well
as some important differences between the one-
dimensional and the three-dimensional case. In the
following we carry out both cases explicitly. Since
the one-dimensional problem can be solved exactly,
any information on the solution of the PY equation
in one dimension serves as a welcome check on the
adequacy of the PY approximation.

II. ONE DIMENSION
A. Analytic Character of the Integral Equation

In one dimension, the PY equation for a system
of particles interacting pairwise with a potential
V(zx) can be written®

@) =1—p f w N

o [ @f@re — ) elw ~ N dar, ()

where e(x) = exp [—8V(x)], f(x) = e(®) — 1,
p is the density, and 8 = (kT)™". The pair distribu-
tion function g(z) and the direct correlation function
C(z) of Ornstein and Zernike® are in the PY approx-
imation related to r(x) by

gx) = r(x)e(z),  C(x) = r(2)f(x).

In our case V(z) = Vg + V., where the hard-

5 L. 8. Ornstein and F. Zernike, Proc. Acad. Sci. Amster-
dam 17, 793 (1914).
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rod potential Vy is given by

=0 (le > l)) (lxl < l))

and the tail potential Vi satisfies V; = 0 for
| > 1+ a.

We take the one-side Laplace transform (LT) of
(1) for a potential of this form and obtain

Fs) + G(s) = (1 + pK)/s — p[F(s) + F(—s)1G(s)
— oY) + p¥(—9), (@)

Va= o

where

l+a

F(s) = —f C(z) exp (—sz) dz,
60 = [ o) ew (—s2) ds,
Y@ = [ yla) exp (~az) d,

v =~ [ e - d 0<z<a,

yiz) =0 x <0 and =z > a),

l+a
K= —zf C@) de'.
0

Solving for G(s), and letting 1 + pK = @, this
becomes

_ Q%' — F(s) — p¥(s) + p¥(—s)
G) = 1 + oF(s) + pF(—9) '

We assume that C(zx) and g(z) are everywhere
finite. Therefore F(s) and Y (s), being LT’s over a
finite interval, are entire functions of s. G(s) is an
LT over an infinite interval and is therefore regular
in the right half-plane (RHP). In the left-half plane
(LHP) G(s) is defined by analytic continuation of
the function G(s) in the RHP.

From (3) it follows that

—Q’s! — F(—s) — pY(—s) + pY(s)
1 + pF(—s) + pF(s)

and that the quantity
GE)Qs™" + F(—s) — pY(s) + pY(—s)]

is an even function of s. According to (3), G(s) has a
simple pole with principal part s~* at s=0. Therefore
the quantity s’G(s)[Q°s ™' +F(—s)—pY (s)+pY (—5)]
is regular at the origin and in the RHP, since both
factors are regular in the RHP. Since it is also an even
function of s, it is also regular in the LHP, and hence
it is an entire function of s. Noting that the growth
rates of F(s) and Y (s) as we go to infinity in the LHP

&)

G(—s) = @

M. S. WERTHEIM

1 1

are O[s™ exp (=1 — a)s] and O[s™' exp (—as)],
respectively, we find by (3) that G(s) goes to —p "
as we go to infinity in the LHP, and that the growth
rate of sG(s)[Q*™" + F(—s) — pY(s) + pY(—8)]
is O[s exp (—as)].

Now consider the function

H(s) = $GE)Q™" + F(—s) — p¥(s) + pY(—9)]
— §'[Y(s) + Y(=s)].

Clearly it is also an even entire function of s.
Furthermore, by (3) H is given by

H(s) = &[1 + pF(s) + pF(—8)]7{Q"™* + Q%'

X [F(—s) — F(s) — 2pY(s) + 2pY(—9)]

— F(8)F(—s) — 2pF(s)Y(—s) — 2pF(—3)Y(s)

— Y(s) — Y(—=s) + #[Y(s) — Y(—8))}. 5)

In the LHP, the term with the largest growth
rate is F(s) which is O[s™* exp (—I — a)s]. Using
F(—s) = —7(0)s" + O(s"), Y(—s) = —y(0)s™" +
0(s7?), and 7(0) = Q* — 2py(0) from (1) as we go to
infinity in the LHP, we find H(s) = O(1) as we
go to infinity along any radius in the LHP. Since
H(s) is even, H(s) = O(1) holds also in the RHP.
But by Liouville’s theorem a bounded entire function

is a constant. We evaluate the constant by taking
H(0) in (5) and find H = @*. Therefore

G©)Q*/s + F(—s) — pY(s) + pY(—9)]
=Q/s"+ Y(s) + Y(—s). (6)

At this point we note that this factorization holds
only for a nearest-neighbor-type tail. For a > 1
the dominant term in the numerator of (5) is Y*(s),
which is O[s™ exp (—2as)] as we go to infinity in the
LHP, and H(s) is O[s™ exp (—a -+ [)s] rather
than O(1).

Combining (6) with (2), we obtain

PO + 66 = @2 - 2) - 270 + F¥(-060)

— FYEEE ~ pFe6E + LY. ()

Let us transform (7) back to coordinate space. For
hard rods with no tail, ¥ = 0. Moreover G(s),
pF(s)G(s) and pQ’s™'G(s) are LT’s of functions
which are zero for z < I. Hence we obtain for z < [:

—Clx) = @(1 — px), ®)

and, since by (2)

7(0) =1 +2pfol @) dz, Q' =1— pQ*2l + ol’),
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and
Q@ =0—p)" ©)

In this fashion the PY equation is solved for
hard rods in an extremely simple way.

B. Elimination of g(x) and Reduction to Finite-
Range Equations

Now consider the case of nonzero tail. The right-
hand side of (7) contains four types of terms. The
term Q*(s™' — ps”?) is the LT of Q*(1 — px), the
term —2pY(s) is the LT of —2py(z), which is non-
zero only for 0 < z < a. The term —p’¥Y(—38)G(s)
is the LT of a function which is zero forz < I — a.
All the remaining terms are LT’s of functions which
are zero for z < .

For future convenience we now define

—C(x) = —Co(x) — 2py(x) + plx — D + qlxz — 1),

where —Co(z) = Q°(1 — px) for (0 < z < ) and
—Co(z) = 0forz > I; p(z) = 0 forz < —a and
z > 0;g(x) = 0forz < 0and z > a. According
to (7), p is given by

pe—0=¢ [ u-zue - 10

We omit the equation for ¢{z — [), since it still
involves g(z) for x > ! + a in the inverse LT of
the term p°Y (—8)G(s).

In order to eliminate g(z) for x > 1 4+ @, and
obtain an equation for C(z) alone, it is necessary
to return to Eqgs. (2) and (6). We define

X(s) = [Flo) + 2oY(s) — Q7" + pQs77,
Z(s) = @ + Y(s) + Y(—9).
Equations (2) and (6) combined now become

(X)) — pZ@N[X(—s) — pZ(s)]

= —ZE[1 + pX(s) + pX(—s) — 2p'Z(s)] (1)
or
X@X(—s) = —Z(s) + p'Z°(). (12)
Now let
X(s) = ¢ " ulsk(s), @3)
Z(s) = —pEu(—9). (14)
The result is
vgh(—s) = p'u@u(—s) + 1 (15)
and
6 = e 16

(—8) + pu(®
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The functions s’X(s) and s*°Z(s) are entire and can
therefore be written as canonical Weierstrass pro-
duets. In the factorization X (s) = u(s)»(s) exp (~sl),
all the roots of X(s) which are also roots of Z(s)
appear in p(s), while the common roots of X(s)
and pZ(s) — 1 appear in »(s).

So far, u(s) and »(s) are determined only up to
an exponential factor, since simultaneously multiply-
ing p(s) by exp ¢(s) and »(s) by exp [—¢(s)]—with
¢(s) an odd function of s—has no effect on any of
the preceding equations. The factor can certainly
be chosen to be an entire funection. Then u(s) and
v(s) are regular except for a simple pole at s = Q.
The poles pQ’s™* in X(s) and @s™* in Z(s) imply
poles @s™" in u(s) and pQs™* in »(s). We define

ws) = Q/s + M(s), »(s) = pQ/s —1+ N(s), (17)

where M(s) and N(s) are entire functions. The
explicit terms taken out of u(s) and »(s) are just
the hard-rod values of u(s) and »(s), with the actual
@ replacing the hard-rod value of Q.

Substituting (17) into (13), (14), (15), and (16),
we obtain

MENE + L IVG + M) - M)
Q

&

[l — Q1 — o] + P(s) + 1(s),  (18)

where

PO) = [ pla) exp (~a2) e
and

() = fo " 4@) exp (—s2) da,
NEON(~9) + 2 N(~9) ~ N@] — N(=9) - N )

= #{aoug + Lury - o)

= ~p’[Y(s) + Y(—3)], (19
and
GE){e"'[—pQ/s — 1 + N(—s)]
+ olQ/s + M)} = —Q/s — M(s). (20)

The right-hand side of (18) is the L'T of a function
which has the constant value Q[1 — Q1 — pl]
for z > a. The inverse LT of the left-hand side
of (18) will certainly be of this form if M(s) and
N(s) are the LT’s of functions m(z) and n(z),
one of which is identically zero except in the interval
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0 < z < a, while the other vanishes identically
outside the interval —a < r < 0. Similarly the
right-hand side of (19) is the LT of a funetion which
is zero for z > @, and the left-hand side of (19)
will automatically have this behavior if m(z) and
n{z) are confined to —a <z < 0and0 <z < a.
The correct choice between these two alternatives
can be made by festing the consistency of each
choice with the two relations between g(z), q(z),
p(z), and y(z) already obtained, namely the defini-
tion of y(x) = [°I} ¢(z’)g(z’ — z) dz’ and (10).
The correct choice turns out to be m(z) confined
to 0 < z < q, n(z) confined to —a < = < 0.
Taking the inverse LT of (18) we obtain

p(—2) =@ f ) n(—=z') da’

+ [ mer — om-a a, @)
gleha= —mlz) — pQ f, ) mz’) dz'
+ [ meme -, @
1 —-Q@ — p)
o [ menar + [ n(-rar. @)
The inverse LT of (19) yields
[ " (=2 — o) dz’
+ 6@ [ n(—2) &z’ — n(—2)
- pz[ | " m)m(’ — 1) d’
+Q [ miw) |-~ e

and from (20) we obtain, defining y(z) = g(z + D),
for the interval 0 < z < a

~1) - 5@ [ 2

+ [ @@ — 2)de = —Q — m@).  (25)

Equations (22), (24), and (25) form a closed set
of three coupled quadratic integral equations for
the quantities m(z), n(z) and g(z)—y(z) being
related to q(z) by —v(@)f+{z + 1) = ¢(@)er(z + [)—
with the auxiliary equation (23) relating the value
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of the parameter @ to m(x) and n(z). Thus the
pair distribution function has been eliminated
completely, and the interval of integration in the
equation for the direct correlation function has
been reduced to the range of the tail potential alone.
It is a characteristic feature of this reduced form
that the square root of the compressibility appears
as a parameter, whereas the compressibility itself
appears in the original PY equation.

C. Further Considerations
It is still necessary to demonstrate the consistency
of (21) through (25) with the definition of y,

v = [ aene ~Da, e

and (10), which may be rewritten as

p(—1x) = —p’ f ) y@ @ — z)de’.  (@27)

Writing (22) as an equation for ¢(z'), multiplying
by v(2’ — ) and integrating from z to @, then
using (25) to eliminate y(z), we obtain precisely
y(x) in terms of m(z) as given by (24). Similarly
we may use (24) in the form which gives y(z') as
a function of n(z’). Multiplying by (&' — z),
integrating from z to @, and using (25) to eliminate
v(z), we obtain exactly (21). Had we assumed m(z)
confined to —a < z < 0 and n(z) confined to
0 < z < g, then we would have found a contradiction
at this point.

One may further verify that, defining a function
£z) = QO(z, ) — p"'n(—2z) — m(z — 1), where
0(z, 1) is the step function which is 1 for 0 < z < I,
and zero otherwise, the direct correlation function
is given

—C@) = i(—2) + @)

+o[ e ~Dar. @)

Finally we consider some important consequences
of Eq. (15). We may expand both sides of (15)
in & Laurent series and equate coefficients for each
power of s. In the case @ = 0, the leading equation is

[NO) — 17" = p"M*(©0) + 1. (29)
But (24) becomes, for the case Q = 0,
N@©) — 1 = oM(0). (30

The two equations are obvioulsy inconsistent for
finite values of M(0) and N{0). Therefore Q can
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never attain the value zero for finite M (0) and N (0).
It follows that there can be neither a straight line
segment in the P-V curve, nor a van der Waals loop.
We conclude that the system does not exhibit a
first-order phase transition. This seems to be a
strong point in favor of the PY equation, since
the exact treatment of this system also shows that
no phase transition can occur, as first shown by
Giirsey.’

There remains some question whether @ can
become zero through m(z) and n(z) increasing
without limit as p approaches some density po.
By (15) this would imply that m(z) approaches
n{—z) and g(z) approaches §(x — ) for1 <z < 2.
We also have ¢(z)f(x + 1) = —e(z 4+ Dglz + 1).
On the other hand, ¢(z) is related to m(z) and n(z)
via (22). To make the two relations for g(z) con-
sistent, enormous eancellation of large quantities on
the right-hand side of (22) would be required, and
it seems unlikely that this is possible.

Next we show how to write g(z) as a sum of nth
nearest neighbor distribution functions.

In taking the inverse LT of (16), we can expand
the denominator in powers of pu(s)/exp (sl)v(—s)
if the inequality p |u(s)] < |v(—s) exp sl| is satisfied
on the contour. The path of integration consists
of the y axis from —i» to —7e a small semicircle
of radius e in the RHP, and the y axis from ie to 2.
On the y axis (15) is equivalent to

by = o* Iu@)* + 1 (1)

and the inequality is obviously satisfied. Letting
8 = ¢ exp 20 on the small semicircle, we have

ISV(—S)G‘I lz — szz

+ 2pQ[1 — N(0) + Qplle cos 8 + O(é),

(32)
P u@)* = 0°Q" + 20°QM(0)e cos 6 + O(¢*),
and, using (23),
(=)' [* — p° |u(s)” = 2pQe cos 6+ O().  (33)

Since @ > 0, and cos 6 > 0, the inequality is
satisfied on the small semicircle also. Therefore we
can expand G(s) = 2.2, G.(s), where G,(s) =
[u(s)/v(—s) exp siI".

Because of the factor exp s, the inequality is
also satisfied on a large semicircle in the RHP. Thus
we have a closed contour on which |»(—s) exp sl| >
|u(8)|. Our original hypothesis that G(s) has no pole
in the RHP implies that »(—s) exp sl + pu(s)
has no zero in the RHP, since in (16) a zero of the
denominator cannot be canceled by a zero of u(s),

¢ P, Girsey, Proc. Cambridge Phil. Soc. 46, 182 (1950).
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u(s) and »(—s) by (15) having no common zero.
It follows that we can apply Rouché’s theorem, and
we find that »(—s) has no root in the RHP,
In calculating
1 b LEd

0@ = 5 [ Gl do (39)
we close in the RHP for # < nl, obtaining zero.
For z > nl we close the contour in the LHP, obtain-
ing contributions from the residues of the poles

at the zeros of »(—s) in the LHP. We also have the
relation

[ o@ds = 6.0 = 57, (35)
which tells us that each g,(x) is normalized to exactly
one particle. It is therefore natural to interpret g,(z)
as the nth nearest neighbor distribution function.

III. THREE DIMENSIONS

A. Preliminary Reduction

In the following we omit mathematical details
whenever the argument closely parallels the one-
dimensional case, concentrating instead on the
important differences between the two cases.

In three dimensions the PY equation can be
written®:

D) =1—p f O)f(x) dr

+ o [ 1N — ) e — ). (36)
We assume a spherically symmetric solution, and
introduce the coordinates ' = ||, |r — r'|, and
a trivial polar angle ¢. We make the equations
dimensionless by defining z = (r/R), n = (xR%p/6),
o = (a/R), where R is hard-sphere radius, B + a
the distance beyond which V,(r) = 0, and take the
one side LT of the equation satisfied by o(z) = zr(x).
Defining

Foy = — | " 20() exp (— ) do,
G@) = fl ) zg(x) exp (— tx) dz,

=-FrO - - " S C) da,
70 = [ ve) ow (~1) da,

v =~ [ 20 e—aNe—a) dr', @)
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and noting that 1 + 244K is the inverse compress-
ibility 8(8p/dp)s, we obtain

F@) + G®)] = (1 + 247K)/t + 127
XA[F@®) — F(-9)G(&) — YO + Y(—9}.
Solving for G(¢), this becomes

G(t)
_ (A +244K)/8* — F(§) + (120/0)[Y(—t) — Y]
1 + (120/9[F (1) — F(#)]

(33)

(39)

Arguing as in the one-dimensional case, F(f) and
Y (¢) are entire functions, and G(¢) is regular in the
RHP and has a double pole at ¢ = 0. Furthermore,

G(-1)

_ 0+ 249K)/ — F(=1) + (120/)[Y(=1) — Y()]
1+ (129/)F(—1) — F@®)]

(40)
and hence the function
£GB{(1 + 249K)¢*
— F(=t) + 129t7'[¥(=8) — Y(O)]}
is an even entire function of £. We define
H() = t'6(){Q + 249K)¢™" — F(—1)
+ 129¢7'(Y(=8) — YOI} + Y() + Y(-9).
By (39), H(?) is given by
H() = t*{1 4+ 2497 [F(—8) — F@)} ™
X {1l + 249K)’* + (1 + 249K)¢7°
X [=F(t) — F(—1) + 2497 Y(~1)
— 24nt7'Y ()] + FOF(—1)
— 2t FOY(—1) + 249t ' F(— DY (D)
+ (20t [Y () — Y(—)}. (41)

Examining the growth rates at large ¢ in a
fashion completely analogous to the one-dimensional
case we find H(t) = O(f) at large t. Therefore,
by a well known extension of Liouville’s theorem,
H(t) is a quadratic polynomial H(f) = A, + A8

Here the first important difference between one
and three dimensions appears. In the original PY
equation there appears one parameter, the value of
which is given as an integral of the unknown function
appearing in the integral equation, namely the
inverse compressibility. In one dimension the
factored equation also contains just one parameter,
which is the square root of the inverse compress-
ibility. In three dimensions, however, two parameters
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appear in the factored equation. As will be shown
later, one of them is again the square root of the
inverse compressibility.
Evaluating the constants by expanding H(¢) in
powers of ¢ in (41), we find
= (1 + 249K),

s = —2F(0) 4 49F'"'(0) — 48Y7(0), 42)

and

G@?+”“K F(0+J&Wn—o—Ywﬁ

A4 Eovo - vy @y

Combining (43) and (33) one obtains

121))\, 1290
t4

_(129)* YE— HG(8) +

th() = 2 4 L7 — 2Uq¥ (1)

(120)'Y()G(t)
t

t2

+ 129F(HG() — — G(2). (44)

We first solve the case of zero tail. Then
G129F () — 12787° —4]

is the LT of a function which is zero for z < 1.
For z < 1 we obtain

—Cz) = N + 690z + %’1)\1358- (45)

Combining (45) with the relations (42), we obtain
two simultaneous linear equations for A, and \,:

=1+ 249G\ + 390 + TNy,
A= =230 4 207 4 Foghy)
— 49(3\ + 1N + den)y),
the solution of which is
=@+ 20"/ =) N = =1+ $)*/0 - ).
@7

(46)

From X\, we obtain the equation of state

BPp™ = (1 4+ n + 7°)/(1 — n)’. (48)

The factorization method is a much simpler and
physically more transparent way of solving the PY
equaglon for hard spheres than the method originally
used.’"*

B. Finite-Range Equations

Returning to (44) for the case of a nonvanishing
tail, we see that —[zC(z)]’ can be written
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—[2C@)]) = —[2Co(x)]’ — 24ny(x)
+px—1)—gqx—1), 49

where —[zCo(z)) = M + 277 + 2m2® for
0<2z<1 and —[zC(x)] = 0forz > 1, y(z) is
confined to the interval 0 <z <a’, p(x) to —a’ <z <0,
and g(z) to 0 < z < d.

Defining

X(@®) = F() — M™% — 1290t7° — 129\, 87°
+ 24917 Y (D),
Z(t) = NP N - YO — V(=)

we obtain from (39) and (43)
[x0 + 2120 [ x5 - 2220

= Z(t)[l - 12” X + =2 12” X(—1)

2(129)°
- 2020 Z(t>] , 50)
or

XOX(—1) = Z() — (—12?3,2 7. Gl
Letting X (1) = ¢ ‘u(®r(@®), and Z(t) = n(@)u(—1),
then

v(O(—1) = 1 — (I20/8)*u(Bu(—1) (52)

and

GY) = —u() (53)

) — (120/0u()

The singularities of X (f) and Z(t) tell us imme-
diately that the leading powers in the Laurent
series are 2 for u(¢) and ¢~° for »(f). We let

p(d) = At7% 4 A7 + M),
¥({) = Bt + Bot™? + Bt + 1 + N(¥),

where M (t) and N (f) are entire functions. We now
compare the two equations for G(t), (39) and (53).
By (39) G(t) is given in the neighborhood of ¢ = 0
by G(t) = t* + O(1). In (39) the numerator yields
—u(t) = —A,t7* — At 4+ 0(Q1), hence consistency
with (53) requires that near zero the denominator
satisfy e'v(—t) — 129t 'u(t) = —A, — At + O@).
Equating the principal part of e'v(—t) — 129t 'u(t)
to zero yields

B, = —121]112, B, = 1277(141 - Az);
B, = 1277[A1 - %Az - M(O)]

e'v(—

(4)
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The equations for the coefficients of ¢ and ¢° yield,
after expressing the B’s in terms of A, and A,:

(1 + 277)A2 - 677A1 = -1 - N(O)
— 129M(0) + 129M7(0),
$n4; + 1 — 494, = —1 — N(0)
+ N'(0) — 69M(0) — 129M"'(0). (55)
Having obtained the parameters A; and A4, in
terms of the functions M (f) and N(t), we obtain
A and A, in terms of A, and A, by equating co-

efficients in the Laurent series of u(t)v(t)e™* = X(t).
The coefficients of £~ and ¢ tell us that

A: = )\1, A? - 2A2M(O) = _X3. (56)

By an argument closely paralleling the one-dimen-~
sional case, N (t) is the LT of a function n(z) confined
to —a’ < 2 < 0and M(¢) is the LT of m(z) which
is confined to 0 <z <a’. We note that ¢ ~[M () — M (0)]
is also the LT of a funetion confined to 0 < z < o’
and equal to M(zx) = [ m(z’) dz’ in that interval.
Hence ¢~ *'»(f) + 129t 'u(—t) isthe LT of n(1 + z) +
(—2) + 8(z—1) + 129[M (0) — A,z + §4,2"]6(z, 1).
By (50), expressed in terms of u and », we have

(-t)]

(57)

1+ 2 [p(—g) — F()] = [ “y(t) + 121

[e o(—t) — 121 u(t)]

Recalling the definition of F(t), the inverse LT of
(57) can be written

[z d = ta) + e(~2)

+12q [ E@E@ — o) do!,  (58)

where
Ex) = (12n)7'n(—2) + Mz — 1)
+ [M©0) — A,(1 — 2) + 34.(1 — z)*]6(z, 1).

Defining y(x — 1) = zg(z) for 0 < z < a’, we now
write down the three coupled integral equations for
m(z), n(z), and §(z), where §(z) = [% ¢(z') dz’. From
u()r(e* = X (f) we obtain for the interval 0<z<a

1@) = m@) + [ mamie — o) ds’

~ 120 [ m@)4, - 34 — M)

+ (4, — A)z — 2) — A,z — )] g2’.  (59)
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From (52) for 0 < z < &’ we obtain
n(—2) + f " (el — ) do’
— 129 f " a(—2) 4, — 34, — MQ)
F (4 — A — 7) — A, — )] e’
- 144172[ [ " @) — 2) do’ + / " )

X [M©0) — A& — ') + 34,z — z')*] dx’]-

(60)
From (53) for 0 < z < a’ we obtain
1@ + [ 16 — ) n(—2) + 1213 4:0"
+ (4, — 4z’ — A, + 34, + M(O)]} dx’
= —[§4.x + A, + m(2)]. (61)

Here v(z) and §(z) are related by —y(z)f(1 + z) =
d(z)e(1 + ).

The equations corresponding to (59) and (60) for
2 > & just duplicate (55).

We note at this point that vanishing of the
inverse compressibility does not lead to a contradic-
tion analogous to the one encountered in one dimen-
sion. This does not prove that the PY equation
in three dimensions can show a phase transition,
or even that a solution for zero inverse compressi-
bility does in fact exist, but at least this possibility
is not excluded in the same obvious way that
occurred in one dimension.

C. Structure of the Radial Distribution Function

Finally we consider the question of zeros of »(—%)
in the RHP, and the expansion of g(x) obtained
by expanding the denominator of (53) in powers
of u(t)/v(—1t) exp &

We consider first the case of positive compressi-
bility. Taking the same contour considered for the
one-dimensional case, we find that the inequality
[129¢7'u(t)] < |»(—1)| is satisfied on the y axis and
on the large semicircle, but not on the small semi-
circle. We compute the variation of the argument
of »(¢) around the contour in two steps.

By our original hypothesis, D(f) = v(—t)e’ —
129t 'u(t) has no zero in the RHP. Hence the varia-
tions of the argument ¢ (D) of D(¢) around the contour
considered here is zero. Near t=0, D(t) = — A+ 0(2).
This means that the change of ¢(D) on the small
sernicircle is zero, and by subtraction, the change of
¢(D) going from —ie to ie counterclockwise is also
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zero. On this part of the contour |124¢ ™ u(t)| < [v(—1)|,
so that [p(D) — ¢[y(—1)]] < ix everywhere, and it
suffices to calculate ¢(D) — ¢[»(—1¢)] at the end
points to obtain the total change of ¢[»(—t)]. At
y=1¢6D@E) = —A,+ 0(e), v(—1t) = —12nd 43¢ +
O0();aty = —¢ D) = —A4, + 0(¢), »(—1t) =
129441 + O(¢”*). Hence ¢[v(—?)] changes by —
on this part of the contour. The point { = 0 is a
triple pole of »(—t), and therefore ¢[v(—¢)] increases
by 3r on the small semicircle. Thus the total change
in ¢[»(—1)] around the contour is 2=, and »(—¢) has
exactly one root in the RHP. In the only solved
case,”* hard spheres with no tail, »(—¢) has two
complex-conjugate roots in the LHP and one real
root in the RHP.

For zero inverse compressibility, D(t) = — At 4+
O@*) and »(—t) = 1294,t° near t = 0. ¢(D)
increases by 7 going from ¥y = —e to ¥ = € counter-
clockwise. At y = ¢ D) = —Ajde + 0();
v(—t) = —A€%aty = —¢, D(t) = Ajie + O(),
v(—t) = —A;e? + O(¢'). Hence ¢[v(—t)] in-
creases by 0 on this part of the contour. On the
small semicircle ¢[v(—1?)] increases by 2, since { = 0
is a double pole. Thus the total variation of ¢[y(—1)]
around the contour is 27. Therefore a solution with
zero inverse compressibility also has one root of
v(—i) in the RHP.

In order to expand G(¢) in powers of u(f)/v(—19)
exp i, it is necessary to find a contour on which
12967 'u(®)] < |»(—t)e'| is satisfied. From our proof
that v(—1) has one root in the RHP it follows that
there can be no such contour passing from —zew
to ¢ to the left of the positive root of »(—1),
since the existence of such a contour would imply
that D(t) also has one root in the RHP. On the other
hand it is clear that on a sufficiently large semicircle
t| = P inthe RHP 124 'u(t)] < |»(—1)| is satisfied.
If one replaces the segment of the y axis between
y = —Pand y = P by |{| = P, one can expand
on the contour. Then g(z) = Z:’_l g.(x) and

(@ <n),
(62)

where the R, are the residues of the quantity in
braces at the roots of »(—¢). Since there is always
one root in the RHP, each g,(z) includes a term
of exponentially increasing character. Therefore the
g.(z) are never normalizable and never represent
nth nearest-neighbor distributions.

In addition to being suitable for numerical
computation, the coupled equations are suitable

zga(x) = 0
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for obtaining two expansions: a virial expansion in
powers of the density, and a perturbation expansion
in powers of fr(z). In the latter case the advantage
of eliminating g(z) is particularly striking; while
even the first order is difficult to obtain from the
original PY equation, the coupled equations in
every order of fr(z) lead to simple linear integral
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equations which can be solved explicitly by reduction
to integrals involving f+(z) and known functions.
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perturbation theory. This method yields quite explicit information about the way in which the in-
fluence of initial correlations will disappear. In particular, it is quite clear that as one goes to higher
order in the perturbation theory one must wait longer times for the influence of initial correlations
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I. INTRODUCTION

N the past few years, Van Hove' and Prigogine®

and their coworkers have developed methods
of analysis which have improved our understanding
of the irreversible behavior of complex systems.
These are essentially methods for doing secular
perturbation theory (i.e., perturbation theory which
is valid for times long compared to the characteristic
interaction times of the system). In particular, in
Prigogine’s method, one uses the perturbation theory
to find the time dependence of the lower-order
reduced distribution functions. This involves the
investigation of the time dependence of various
diagrams and summations over infinite sets of these
diagrams to obtain kinetic equations for the reduced
distribution functions. The theory is somewhat
cumbersome in that one works with time and spatial
Fourier transforms of the distribution functions
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11, Van Hove, Physica 21, 517 (1955); 23, 441 (1957);
25, 268 (1959).

2 1. Prigogine, Non-Equilibrium Statistical Mechanics (In-
terscience Publishers, Inc., New York, 1962).

rather than the functions themselves. We want to
introduce here a method which is closely related
to that of Prigogine but which avoids the use of
the transforms. This method has the advantage
that the time dependence of the diagrams and the
existence of various time scales in the kinetic equa-
tions become very explicit. It has the disadvantage
that it seems applicable only to particles with
short-range interactions.

Probably the most important result of this treat-
ment is contained in Eq. (24) and the subsequent
discussion, which shows, to each order in perturba-
tion theory, how the influence of correlations in the
initial distribution function becomes weaker as time
progresses.

The system we want to treat consists of N particles
which do not interact with each other but which do
interact with N fixed scattering centers. This prob-
lem reduces to a single-particle problem, which is
dynamically simpler than the interacting gas, but
exhibits most of the important points in approach
to equilibrium problems.

Previous treatments of this problem have not
allowed for correlations between the particle and
the scattering centers.
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for obtaining two expansions: a virial expansion in
powers of the density, and a perturbation expansion
in powers of fr(z). In the latter case the advantage
of eliminating g(z) is particularly striking; while
even the first order is difficult to obtain from the
original PY equation, the coupled equations in
every order of fr(z) lead to simple linear integral

651

equations which can be solved explicitly by reduction
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centers as well as the particle. This allows the treatment of correlations between the particle and the
scattering centers. A new diagrammatic method is used to investigate high-order terms in the
perturbation theory. This method yields quite explicit information about the way in which the in-
fluence of initial correlations will disappear. In particular, it is quite clear that as one goes to higher
order in the perturbation theory one must wait longer times for the influence of initial correlations
to disappear. For completeness, the Boltzmann equation is derived and solved to lowest order in the

interaction strength.

I. INTRODUCTION

N the past few years, Van Hove' and Prigogine®

and their coworkers have developed methods
of analysis which have improved our understanding
of the irreversible behavior of complex systems.
These are essentially methods for doing secular
perturbation theory (i.e., perturbation theory which
is valid for times long compared to the characteristic
interaction times of the system). In particular, in
Prigogine’s method, one uses the perturbation theory
to find the time dependence of the lower-order
reduced distribution functions. This involves the
investigation of the time dependence of various
diagrams and summations over infinite sets of these
diagrams to obtain kinetic equations for the reduced
distribution functions. The theory is somewhat
cumbersome in that one works with time and spatial
Fourier transforms of the distribution functions

* Research supported in part by Air Force Contract No.
AF-AFOSR-62-122,

t Presently at Department of Physics, University of
Notre Dame, Notre Dame, Indiana.

11, Van Hove, Physica 21, 517 (1955); 23, 441 (1957);
25, 268 (1959).

2 1. Prigogine, Non-Equilibrium Statistical Mechanics (In-
terscience Publishers, Inc., New York, 1962).

rather than the functions themselves. We want to
introduce here a method which is closely related
to that of Prigogine but which avoids the use of
the transforms. This method has the advantage
that the time dependence of the diagrams and the
existence of various time scales in the kinetic equa-
tions become very explicit. It has the disadvantage
that it seems applicable only to particles with
short-range interactions.

Probably the most important result of this treat-
ment is contained in Eq. (24) and the subsequent
discussion, which shows, to each order in perturba-
tion theory, how the influence of correlations in the
initial distribution function becomes weaker as time
progresses.

The system we want to treat consists of N particles
which do not interact with each other but which do
interact with N fixed scattering centers. This prob-
lem reduces to a single-particle problem, which is
dynamically simpler than the interacting gas, but
exhibits most of the important points in approach
to equilibrium problems.

Previous treatments of this problem have not
allowed for correlations between the particle and
the scattering centers.
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II. EXPANSION OF THE DISTRIBUTION FUNCTION

Our system will be described by the distribution
funetion

fon(X1, P1 - I, b,

where x;, p; are the position and momentum of
the ith particle, r; is the position of the ¢th scattering
center, and ¢ is the time. f.y is an ensemble proba-
bility distribution for both the particles and the
seattering centers and as such is normalized to 1,

[

Its time dependence is given by the Liouville
equation which we write as

'xN;pN,rl LY

Iy, ) dx, dp, -+ dty = 1.

'iafgy/at = LszzN, (1)
where L.y is the operator
6
Ly = —— Zl Pi*og.
=
o~ V(@ — 1) 8
2
slzl axi api ( )

V(x; — r;) is the interaction potential energy be-
tween the jth particle and the lth scattering center.

The distribution function for one particle and all
of the scattering centers is given by

f(x: D, X - Xn; Pw,

Xr oo (3)

Since the particles do not interact with each other,
one can integrate (1) over the positions and momenta,
of all but one particle to obtain

i 8f/at = Lf,

where L is given by

Iy, t) = f sz(x; P, X3, Pz -

Iy, 1) dx, dp, -+ dxy dpy-.

@

N

E x —_ r;) 6
= “op’

The function f is normalized to one also. We have
sssumed that the function f,y is chosen symmetric
in the variables x,, p, --- Xy, px. We shall later
make the same assumption about the variables
I, -+ ry. Since the particles are identical and the
scattering centers are identical these are reasonable
assumptions.

As usual we eventually want to take the limit
as the number of scattering centers N and the
volume @ become infinite with the ratio N/Q finite.
In this limit, f has no physical meaning, and one
should work instead with reduced distribution func-

L=-tp2 )
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tions or correlation functions. We define the reduced
distribution functions by

fc(x: P50 1, t)

= ¥ [ f, 0,1

REE '8 t)dr:+1 e
0<s<N. ()

It is an assumption that the f, exist in the limit
of large N and Q. We have used a definition of the
reduced distribution functions which differs from
the normal one in the factor before the integral. f, is
ordinarily given by

fo = N/ = 9! [ fdevus -

drN)

dry;

however in the limit of large N, for any s, the two
definitions converge to each other. The reason for
this choice of f, will be seen shortly. We now intro-
duce a functional transformation to a new set of
funections.

folx, p, 1) = Ux, p, 9),
fig, p, 1, 9) = N/QU(x, p, §) + Unlx, p, 11, 0),
f2(x, P, 11, 15, 1) = N*/QU(x, p, ©)
X N/QUi,p,n, ) + N/QU,(x, p, 13, t)
+ Uz, p, 11,15, 1)

@

}N, = W/9"Uk,p, 1)
+ (N/Q)N—l Zi Ul(x: py r.', t)
+ (N/Q"* 2ii Ualx, p, 50, 15, 1)

+ - Iy, t).

From these equations one obtains the inverse
equations

fvx, py1y - -

. UN(X, p, I -

Uk, p, &) = fu(x, p, 9,
Ui, p, 1, ) = fix, p, 11, ©) — N/Qfo(x, p, 1),
U,x,p, 01,12, 0) = [:(X, P, 14, Iz, ©)
— N/9fi(x, p, 1, ) — N/Ofi(x, p, 13, ©)
+ (N/9’f(x, p, ¥)

®

Now from Egs. (7) and (8) one can show that the
U, have the property that

j U.(z, PyTr v Ty ) dr. = 0,

s> 1, 1<k<s. )
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This property will be useful later and is the reason
for our particular definition of the f,. Combining
Eqgs. (6) and (7), one obtains the desired expansion
for f, which we shall write as

QNNf(x, Py Iy - Iy, t) = U(X, P, t)
+ Q/JV Zi Ul(x’ p, I t)

+ (Q/N)2 Z:i.i U2(x, p,r,, 1, t) + - (10)
syiy

This expansion corresponds to that of Prigogine’s
except that we work directly with f rather than
its Fourier transform. We shall now assume that
the distribution of scattering centers is homogeneous
and that there are no correlations between scattering
centers. In this case the functions introduced in
Eq. (7) are, in the limit of large N, particle-scattering
center correlation functions. If one wants to include
correlations between scattering centers one must
introduce scattering center—scattering center cor-
relation functions. This can be done without
difficulty but the expansion for f becomes somewhat
more complicated.

III. TIME EVOLUTION OF THE SYSTEM

We now turn to the central problem, that of
finding the time dependence of the U,. In particular,
we examine the time dependence of U(x, p, t). To
do this we use a method developed by Zwanzig.?

Suppose one has a vector z(¢) in a Hilbert space
which satisfies

¢ az(t)/at = La(t),

where L is a time-independent linear operator.
Then if P is any linear operator one can show that

i aPx(f)/dt = PLPx(t) — i f ' PLGG( — P)

X LPz(t — §) ds + PLG()(1 — P)z(0),  (l1a)

(1 — Pa(t) = —i f " GE)( — P)LPa(t — §) ds

+ GOQA — P)z(0),
where G is the operator
G(t) = e—il(l—P)L. (llc)

In our application we choose z(t) = Q'Nf(x, p,
r, -ty t)and P = 1/Q" [ dr, -+ - dry. We take L
as given by Eq. (5) and split it into two parts:

L =L, + 4L,

(11b)

(12a)

3 R. Zwanzig, Lectures in Theoretical Physics, Boulder,
Colorado, 1960 (Interscience Publishers, Inc., New York,
1961), Vol. IIIL.
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L, = —1t/mp-9/0x, (12b)
s 6V(x - rz) _a_

8L =1 3, —a m (12¢)

With these choices it is easy to show that
PP =P, 1-P'=(1-P), (13a)
PL, = L,P, (13b)
P3LP =0, (18¢)
PL,P = L,P. (13d)

Using these properties and the expansion (10)
for f, one obtains from (11a)

¢ aU(X, P, t)/at = LOU(x) P, t)
— f PSLG()SLUG, p, t — s) ds
0

+ PSLG(t)[Q/N X; Uiz, p, 1;, 0)
+ (/N)* i Ualx, p, 15,15, 0) + ---1. (14)

This gives us an equation for U(x, p, £) which depends
on the value of U, s > 1 at ¢ = 0, i.e., on the initial
correlations. The central question is now what kind
of correlations can one have at ¢ = 0 and still
obtain solutions of (14) for U(x, p, t) which approach
equilibrium, and furthermore how long must one
wait to get near this equilibrium.

The correlations at ¢ = 0 we shall assume to be
of finite range, that is, we assume a length R such
that

Ut(x; P, 1,, 0) =0 (15)

if|x — 1] > Rforany k < sand all s > 1. We have
assumed here that the correlation range R is in-
dependent of s.

With this assumption we want to investigate the
solutions of (14). These solutions depend on the
operator G(t) whose structure is so complex that
one must use some kind of a perturbation expansion
for it. One can in this problem assume the density
of scattering centers is low and expand G(f) in
powers of this density or one can assume weak
interactions between the scattering centers and the
particle. The latter choice is the simpler so we shall
take an expansion of G(¢) in powers of the potential
term &L.

We assume that

6 = 3 6),

n=0

(16)

where G"(f) is of order (5L)". In Appendix I we
show by the usual methods that
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G"(t):(-l)”fo' fo“ fo' T

X S —P) aVix — v[tax— 4] —r:)

oV(E — vt — ;] —r1.,)
ox

aVix — v[t — ]
ox

X dufe TP 4 g7 (1 — P,
where
3; = [8/9p + (t — t.)/md/dx],

In particular, G°(t) = P + ¢ '**'(1 — P).

In Eq. (14) we shall replace G(f) by G°(f). The
first term to consider is PSLG(s)éLU(x, p, t — s).
From Appendix II we see that this term can be
written as

PSLGQ°(s)sLU(x, p, t — s)
~ aVE =1, 9
= - Z"o Eix P ax

aV(x — vs — 1,,) (i ii)
X ox ap+max

X u(x — vs,p, t — s).

Xal(l_P)

— I.,)

X3 - (1-P)
(17

v = p/m.

g

(18)

All of the terms in this double sum vanish except
those for which 7, = 7,. To see this, change the
derivatives with respect to x to derivatives with
respect to r;, and r;, and remember that P integrates
over all the r variables. Therefore,

PSLG*(s)sLU(x, p, t — s)
= Z P 9_&;'_1'_1),3_

ox ap
oV(ix —vs — ;) (_6_ _s___ci)
X ax ap + m 9x.

X Ux — vs,p, t — s). (19)

Now if we assume that V(%) = 0 for |x] > a, we
must have both |x — r;| < cand [x —vs — 1| < a
if (19) is not to vanish. But this means
PSLG°(s)sLU(x, p, t —s) =0

for s > 2a/v. (20)

This term vanishes then for times longer than a
collision time ¢, = 2a/». In Appendix II, by means
of a diagrammatic method we generalize this result
to all orders in 3L and prove

P3LG (s)oLu(x,p,t —s) =0

for s > (n/2 + 1)¢,. (21)
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Now let us consider the lowest-order contributions
from the correlation terms in (14). Using the defini-
tion of G°(t) and Eq. (9) we can write

PSLG°(t)[Q/N >_; Uiz, p, 1;, 0)
X (Q/N)2 Zi#i Uz, p,1:,1;,0) + - -]
aV(x

_ . V@ —1.) 9
= 'LP Z,‘o 9 6p [Q/N Zi

X Uy(x — vt, p, 1;, 0) + (Q/N)* D ins
X Uz(X ~ Vi, p, T, Ij, O) + - ]

Consider the U, term. We must have 7, = 7 in the
double sum or this term vanishes because of the
aV(Ex — r;,)/ox = —oV(x — r,)/or;, factor.
Similarly in the U, term we must put either ¢, = ¢
or i, = j. Suppose 7, = 4. Then j # ¢ = i, and this
term vanishes anyhow because of the integration
of U, over r; [see Eq. (9)]. The same is true for
all the U;, 7 > 1. So

PSLG°(t)[Q/N Ze U\, p, 1., 0) + (2/N)*
X Ei#i UZ(X) P, I 1;, O) + - ] = Q/NP

(22)

X Z; Q‘Y%‘E)'% Ui(x — vi, p, 15, 0). (23)
For this term to be nonzero we must have |[x —r,| < a
and from (15) also |x — vt — r;| < R. This means
(23) vanishes unless ¢ < (R + a)/v. We define
!r = R/v as the correlation time. Then (23) vanishes
for ¢ > i, + tz. In Appendix III we find to all
orders that

PSLG*)U,(0) =0 forall ¢t if I>n+41; (24)

fort > [i(n — 1) + &)t + ¢tz if | < n + 1. Equation
(24) gives a rather exact description of how the
influence of the initial correlations disappears from
Eq. (14). In the first place, the initial correlations
of higher order contribute only in high order in
the perturbation theory and therefore could hope-
fully be neglected in a really weakly coupled system
unless these correlations were extremely strong. In
the second place, any correlations which must be
considered vanish to any order in the perturbation
theory after a well defined time which increases
as the order of perturbation theory increases. The
time one must wait in order to neglect the initial
correlations is now well defined in the sense that
its dependence on the range of forces, range of
initial correlations, strength of initial correlations,
and order of perturbation theory is known. If we
assume that we have waited long enough to neglect
the correlations, Eq. (14) becomes a self-contained
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equation for U(x, p, t), in particular,

10U (x, p, §)/8t = L,U(x, p, t)
— f POLG(s) SLU, p, ¢ — ) ds.  (25)
0

One would now like to show that the solutions
of (25) show approach to equilibrium behavior.
Time-convoluted equations of this form are by
now familiar in nonequilibrium statistical mechanics
and they are usually treated by reducing them to
a Boltzmann-type equation, whose solutions are
known (see Ref. 2). Most of these methods seem
unsatisfactory in that the reduction takes place
only in the limit of long times, and the length of time
required is unclear. For completeness we shall
include a simple reduction of (25) to a Boltzmann
equation, to lowest order in the perturbation theory.
We hope in a later paper to be able to treat the
time-convoluted equation. The simplest reduction
is obtained by the following argument. Replace
@(s) by G°(s) in (25). From (20), P3LG°(s)éL is
zero for s > 2a/v = 2ma/p. For large p this is
a very short time. If U(x, p, ¢} does not vary much
over this time interval, the G°(s) acts like a &
function and we can set s = 0 in the U(x, p, t — s)
term. From Eq. (19) we see that U must also be
a slowly varying funection of x, over a distance a,
to permit this treatment. If { > {, we can set { = =
in the upper limit of the integral since G°(s) = 0
for t > t,.

Using this approximation we show in Appendix
IV that (25) can be written in component form as

aU(x, p, )/ot = —1/mp; 8/8z,U(x, p, 1)
_ mN/sz( f " g/ da) 3/ap:

X (8:i/p — P-‘Pi/Pa) d/op;Ux, p, 1), (26)

where

@) = [ VOVG - ady. @)
If we assume that V is a decreasing function
of y (repulsive forces), then g(e) is a decreasing
function of «, so
[ v@/ada<o. (8)
0
Equation (26) is the Boltzmann equation for
this problem, in the weak coupling limit. The first

term on the right is the streaming term, the second
is the collision term. That the solutions of this
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equation show approach to equilibrium can be
proven by the well known H-function method.

In the homogeneous case, where 8/3z,U(x, p, t) =0,
we can write explicit solutions. We expand U(p, t)
in spherical harmonics,

U, 1) = 2im Cin®, DY, 0).  (29)

Putting this expansion into Eq. (27) and using
Eq. (IV.7) and the orthonormality of Y7(8, ¢)
we have

8C1.(p, )/0t = mN/Q

x ([ /e )i + v/, 0, G0
which has solutions

Clm(p; t) = Al"-(p)eMzm“) (31)
where

L

M0 = m/o( [ @/adallt + 1788 32)

Note that AMp, 1) < 0 by virtue of (28). After a
long time all terms but the I = 0 term disappear
and we are left with the spherically symmetric
equilibrium distribution.
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APPENDIX I

We want to derive the expansion given by Eq. (17)
for the operator G(f) = ¢ *“'~P**, Using the normal
field-theoretic techniques one can write

6 = 3 &),

n=0

where
t
G(t) = (—ay" f ¢ TR UT(L — P) SL
1]
LF
% j; e_i(l—P)Lo(h_")(l — P)sL ---

% f”‘" e_e(l—P)La(‘»-’"'”)(l — P) oL

x e—l'(l—P)Lolu dtl e dtn-

—i(1—-P) Lot

(I.1)

In particular, G°(t) =e
If one expands e *“"®%** in a power series and
remembers that PL, = L,P, one can show that

eIt . p g i) — P, (1.2)
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W (Y2 'S X
X —

~ - 0 k4 3
L, (23 (2}

Fia. 1. Representation of general nth-order term.

Substituting this into (I.1) and using P(1—P)=0,
one obtains

Gu(t) = (_1:). f‘ e—-‘L.(t—h)(l . P) 5L

x [ e 4= Py oL
[}

tn—1
x f e—iLo(tu—x—lu)(l - P) 6L
0

X {P 4 e 1 — P)} dt, --- db,. (1.3)
Now we need the following identities:
¢*I'h(x) = exp (—pt/m-8/3x)h(x)
= h(x — pt/m)e”***.  (1.4)

This is just the well known definition of a displace-
ment operator,

et 3/0p = (8/9p + t/m 3/ax)e” "t (L.5)

Equation (I.5) can be obtained by letting both
sides act on an arbitrary function of x and p and
using (1.4). Using (1.4) and (1.5), one has

e LS = ot El 3V(xa— l'z)._i

X ap
_ .5 V@& —r1 — p/mi) ( 9.t g) ~iLas
=i 2 ox ap T mal

(I.6)

Putting (I.6) in (I.3) we can move all of the
exponential operators to the extreme right to obtain

o= [ [ D

X 3. 0-P oV(ix — r,-,a; vt — &])
AV —r,, — vt — )
ox

X 3,67 TP f 7 (1 — P} dby - - - dt,, (17)

where v = p/m and 8; = (3/0p + (¢ — t,)/md/dx)"
It should be noted that the operators d; in (I1.7)
act on everything to their right.
APPENDIX II
We want to develop a graphical method for
investigating the time dependence of terms of
the form P3LG"(s)6LU(x, p, t — s) and
PIL U (x, p, 1, -+ 1, 0).

Let us look at PSLG"(s)8LU( — s) first. From
Eq. (17) we have

X&a(l—-P)---(1—-P)

L. JONES

PSLG™e)sLUG, p, ¢ — §) = (—1)° f f

x [T X T, pEZILD
Vi —r,, — v[s — t,]).a

X (1 — P) =
V@ — 1, —vls — &) _
X e (1 — P)
V(x — 1i,, — vs),(i _s_i)
X ox ap + m 0X

X Ux—vs,p, t—s)dt - di,. (IL.1)
The general nth-order term will be represented
by a line with » - 2 marks on it. With each mark
is associated a summation variable 7;, and a factor
{oV(x — r;,, — v[s — 1])/dx}+3:, except for the
first and last marks %, 7,., for which the factors are

aVx — rio).i

ox 9]

and

V(i —r;,,, — Vs) (__6_ _.g_i)
ox "\op tmox)
respectively (see Fig. 1).

In the expression (I.1), n 4 2 summations appear.
Let us consider terms of this sum which have the
property that the ¢, index is different from all
other indices. Now P = [[¥., P, = [[¥., 1/0 [ dr..
For terms of the above type the P,, operates only on
a term of the form {dV(x — r;, — v[s — #])/dx},
and this gives zero if we change the x derivative
to a r, derivative and use the fact that V has
finite range. The net result is that only those terms
of (I.1) are nonzero which have every index the
same as af least one other index. To indicate graph-
ically when two indices are the same, we shall
connect them by a loop [see Figs. 2(a) and 2(b)].
We have shown then that only those diagrams
contribute in which every mark has at least one
loop attached. If one can get from the first mark
to the last mark by means of connecting loops only,
then the diagram is said to be linked [Fig. 2(a)];
otherwise it is unlinked [Fig. 2(b)]. We now prove:

Theorem. The terms in (I.1) corresponding to
unlinked diagrams are identically zero.

S S

fa)
) -
Fra. 2. 5th-order diagram: (a) linked, (b) unlinked.

N

F—
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Proof: Suppose that the diagram is unlinked
between the %, and 4., index (or mark). Then
none of the variables r;, --- r,, are the same as
any of the variables r,,,, - - r;.,, in (I.1).

Then the (1 — P) that stands before the 7,.,
term can be replaced by 1 — P, Pia,, *** Piu..
We can also take the P that stands before the
first mark and separate off a factor Py,,, --- P;...
which we can bring over to the 7;,, term so that
we have standing before the 7,,, term a factor

(Pfk+:Pfl+: ot P"n-h)(l - Pib+1Pi'I:+t e Piu+1) = 0'

Hence the terms in the sum corresponding to
unlinked diagrams are zero.

Now the index of a linked diagram is defined
to be the number of loops that one must traverse
to get from the first mark to the last. The final
result that we want is:

Theorem. The contribution of a linked diagram
of index ! vanishes for s > If,.

Proof: To illustrate the method of this proof let
us take a fourth-order linked diagram of index two.
[See Fig. 3.] From (I.1) we see that with each mark
except the first there is associated a time variable.
From the limits on the integrations we know that
§ >t >ty > ty > i Now from the fact that
the third and first mark are connected, we see that
the expression (I.1) vanishes unless both [x—r;,| < a
and |x — r;, — V[s — &]| < @, orunlessv [s—&| < a
or |s — & < 2a/v = {,. Similarly the fact that
the second and last marks are connected implies
that (I.1) vanishes unless [x — r;, — v(s — )] < a
and [x — r;, — vs| < a, or unless vf, < 2aort, < {,.
Then (1.1) vanishes unless s < &, + &, < 1, + 1, < 2¢..
This proves the theorem for this particular diagram.

It should be clear that the same type argument
applies to any linked diagram. One can also see
quite easily by example that this type of result is
not available for unlinked diagrams, so it is fortunate
that they give zero contribution to (I.1).

Now to complete the proof of (29a) all one need
notice is that the index of any nth-order diagram
is less than or equal to (n + 2).

APPENDIX III
In this appendix we shall consider the time

< .

' t ts  te s

Fre. 3. 4th-order linked diagram of index 2.

6567

L 3 5
£ A

X
L L, [

Fia. 4. General diagram for correlations.

dependence of terms of the form
P(SLG”(t) U[(x, P,I, -1y 0)

by methods similar to those of Appendix II.
From Eq. (17) we have

PBLG"(t)Uz(x; p,r, +--1;,0) = (—1)* f‘

tn oV(x —r;,) 8
Xj; Zi."‘Zs.PT'a_p(1~P)
oV —r;, — vt — t‘])-al .- (1 — P)

ax

oV(E — 1, — V[t — 1)) 3
ax O

XUx—vt,p,r - -1,0)dt, ---dt,. (IIL1)

We represent the general term by a horizontal
line with » 4 1 marks and a vertical line with [
marks (Fig. 4). By virtue of Eq. (9) and the same
arguments as in Appendix II, we see that the only
terms in the sum which are nonzero are those for
which each mark is connected to at least one other.
We may connect horizontal to horizontal marks or
horizontal to vertical marks, but not vertical to
vertical marks since in Eq. (10) no two indices are
ever the same. This means that any diagram for
which I > n 4 1 vanishes identically since there is
no way to connect all the vertical marks to dif-
ferent horizontal marks,

Again as in Appendix II one proves that only
linked diagrams are nonzero. The index of a linked
diagram is again defined to be the minimum number
of loops one must traverse to get from the first
horizontal mark to the vertical line. Let us consider
in particular a diagram of fifth-order and index
three (Fig. 5).

From the structure of this diagram and the
arguments in Appendix II we see that its contribu-

X

X

X

¥ N
£, t +3 ty 2o t

F1a. 5. 5th-order diagram of index 3.
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tion will vanish unless

since the first and third marks are
@ Jt—tl <t, connected;

since the secohd and fifth marks are
(b) lt4 - t1| < o) connected ;

since the fourth mark is connected
() & < t, + tr, to the vertical line.

We have then
t<t,+ta<t,+ 6 <2+ 1
< 2, + t; < 3t, + tr.

One can generalize this to show that the contribution
of any diagram of index & vanishes for ¢ > kt, 4 tz.
One can see that for a given n and [ all diagrams
have index less than or equal to 3(n + 1 — [) 4+ 1.
Then for a given n and ! all contributions vanish
fort > [3(n — 1) + 3t + te.

APPENDIX IV
We want to find the explicit form of the expression

f PSLG(s)sLU(x, p, t — o) ds

[ e[ Wezn 2

6V(x—vs—r,-).<i _s_i)
ax 6p+m6x dr;
X Ux — vs,p, t — 8) ds.

[See Eq. (19).]

Since the value of the integral over r; is in-
dependent of j we may remove the sum. We also
change the variable of integration from r; to y =
X — r; to obtain

X

f " PSLG)SLUK, p, t — 5) ds = —N/Q
T [oV(y) 3oV —vs) (8 , s @
X./; y 0Oy 'ap dy (ap+max>
X U — vs, p, t) dy ds.
Since [0V (y)/dy]l0V(y — vs)/dy] = 0 when

vs > 2a, the appropriate approximation is to set
s = 0 except in the V(y — vs) term to obtain

f PSLG°(s)sLU(x, p, t — s) ds = —N/Q
1]

= raV(y) 8 aV(y — vs) @
o -—dy ds

A

X U, p, 1) (Iv.1)

To make this approximation we have assumed
that U(x, p, t) is a slowly varying function of x
over the distance a and slowly varying in ¢ over
times of the order {, = 2a/v. Using component
notation and integrating by parts on y, (IV.1)
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can be written as
f PSLG*(8)SLU(x, p, { — 5) ds = N/Q 8/dps
0

x [ ) [ v o/au. o724,

X V{y — vs) dy ds 8/dp;U(x, p, ). (Iv.2)

Remembering that v = p/m we can now change
the y, derivatives to p, derivatives to obtain

fo " PSLG)SLU(x, p, t — ) ds = N/2 3/dp:
X [a/apf o/op, [ ) [ v

X V(y — ps/m) dy d8](3/3p,-)U(X, p, ). (IV.3)

We now assume that V has spherical symmetry
so that the integral over y can depend only on the
magnitude of ps/m. We set

oos/m) = [ V@)V — po/m) dy.

Note that if V vanishes for |y| > a, then g vanishes
for ps/m > 2a or s > {,. Because of the spherical
symmetry, g has zero derivative at the origin,
that is, ¢'(0) = 0. We note that

dg(ps/m)/dp; = s/mg’(ps/m)p;/p,

(Iv.4)

and
8’glps/m)/dp; dp; = §*/m*g" (ps/mp.p;/p*
+ s/mg’(ps/m)(5:;/p — ppi/p°).
This yields
fo " PSLG°)sLUG, p, t — 5) ds = N/2 8/3p,

X [ " s/ mppi/5" + mfag os/m)

X (8/p — ppi/p°) 0/0p;] dsU(x, p, §).  (IV.5)

When we integrate over s from 0 to «, the g"
term vanishes since ¢'(0) = ¢’(w») = 0. In the
g’ term we change the variable of integration to
a = ps/m so that the integral is independent of p
and obtain

f., " PSLG°(s) 5L ds = mN /9 [ " 0@/ da

X 8/8pi(8.:/p — ppi/D°) 3/0p; . (IV.6)
It is useful to note that in spherical coordinates
3/3p.(8:;/p — pp:/p’) 8/3p; = 1/p’[1/sin 6 8/36
X (sin 6 3/96) + 1/sin’ 6 6°/84°].

The eigenvectors of this operator are the spherical
harmonics Y7 (6, ¢) and its eigenvalues are —I({ 4 1).
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The passage of classical particles through a grainy scattering medium can be described by a line-
arized Boltzmann equation. A discussion is given of the physical conditions which justify the use of
the Fokker—Planck diffusion approximation to this equation. Some limiting properties of the solutions
of the diffusion equation are first discussed for the initial-value problem in an infinite medium charac-
terized by a diffusion length D. For a total path length £ << D convenient formulas are given for the
distribution of scattering angles 8 and, for given 6, the first few moments of the final position vector
are computed. These results are taken as a basis for approximate treatment of steady-state boundary-
value problems. The case of a particle beam incident on a thin plane parallel slab of thickness d < D
is considered. Approximate formulas are given for the angular distribution of the transmitted beam
and for the (very small) fraction of the beam which emerges from the entrance face. Errors are as-
sessed, and the behavior for grazing angles of incidence or exit is discussed in a conjectural way.

I. THE DIFFUSION APPROXIMATION

N the analysis of problems involving the passage
of particles through a grainy scattering medium,
one is sometimes justified in adopting the Fokker—
Planck diffusion approximation to the linear
Boltzmann equation.’ It is our main purpose here
to discuss some limiting properties of the solutions
of the resulting diffusion equation, in order to bring
out what may be useful approximation schemes
for situations in which the geometric dimensions
of the scattering medium are small compared to
the diffusion length. In this first section, however,
we are concerned with establishing the nature of
the physical conditions that warrant the transition
to a diffusion equation description of multiple
scattering.

The general problem under discussion has to do
with the motion of classical point particles in a
medium filled with fixed spherical seattering centers,
randomly located on a fine-grained scale.” The
coarse-grained number density of scattering centers,
n, we take to be uniform over the medium and
constant in time. In the collision of a particle with
a scattering center, it is only the orientation, not
the magnitude, of the velocity vector v that under-
goes change. Let ¢, . be the differential cross

* This work has been supported in part by the Institute
for Defense Analyses, Washington, D. C

1 For a general review, see S. Chandrasekhar, Rev. Mod.
Phys, 15, 1 (1943).

2 There is a vast literature on this problem of multiple
scattering without energy loss which goes beyond the diffusion
approximation. See, for example, S. Goudsmit and J. L.
Saunderson, Phys. Rev. 57, 24 (1939); Phys Rev 58, 36
(1940); C. Gros]ean Physlca. 19, 29 (1953), ngner,
Phys. Rev. 94, 17 (1954)

section for scattering from the direction of v to
the direction of v'; and let f(x, v, £) d’z dQ be the
the probability (in an ensemble sense) that, at
time ¢ = {/v, the particle is located in a spatial
volume element d’z centered about x, with velocity
vector lying in an element of solid angle dQ centered
about the direction of v. We suppose that the
distribution function f satisfies the Boltzmann
equation

%0 1 ¥.fx, v,

=n [ 49 ool v, 0 — x5, ¥, 0). ()

Suppose now that we are dealing with a scattering
function ¢y, = o), ¢ = cos™' (v-v'/»°), which
is strongly peaked at very small scattering angles
¥. In this circumstance we are tempted to approx-
imate the collision integral above by expanding
f(x, v/, £) in a Taylor series about v/ = v, retaining
only the lowest nonvanishing terms. This leads
to the diffusion equation of interest. Denote by 6
and ¢ the polar and azimuthal angles which describe
the orientation of the vector v with respect to fixed
axes; and let cos 8§ = u. We then find

f » of 1 a?f}
where the diffusion length D is given by

s Vf——{—(

yp =B [" Yoysnvav. @

Before proceeding to our study of the mathe-
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matical properties of the solutions of the diffusion
equation, let us first consider what errors are in-
volved in this transition from the Boltzmann
equation to a diffusion equation. It is of course
not easy to assess the errors in general terms,
since they must depend not only on the nature
of the scattering law o(¢) but also on the boundary
and initial conditions and on the region in phase
space and time for which the assessment is to be
made. A crude discussion, however, can be given
along the following lines, for a representative
problem of motion in an infinite medium.

Consider a situation in which a particle is moving
along the z axis at the initial time. We ask for the
distribution in orientation of the velocity vector
at some later time (or at some path length £ = vt),
irrespective of the spatial position of the particle.
Hence we regard f as a function of 6 and ¢, where
6 is the polar angle, and normalize according to
J1(8, £) d@ = 1. Throughout the rest of the discussion
we shall be concerned only with path lengths £
small compared to the diffusion length D. For
{ < D we expect that f will be peaked at small
angles @; and, in the small angle approximation,
the diffusion equation is solved by

1 —
faire(8, £) = = P [—6%/67, @
where

0 = 4l/D K 1. (5)
We now attempt to assess how seriously this
departs from the true solution f of the Boltzmann
equation, employing a kind of iteration test for
the purpose. Let us insert the approximation (4)
into the true Boltzmann collision integral. In the
small angle approximation this gives
af(6, ©)

X sin yo(yP){exp [—(¥* — 260y cosa)/¢?] — 1}. (6)

In the diffusion equation approximation to the
collision integral, on the other hand, the expression
in curly brackets above is expanded to lowest order
in ¢*; thus

- Gen 51505 o

X sin yo(P)Y*'. (@)

The diffusion approximation is justified, for given
0 and ¢, insofar as (7) adequately approximates (6).
It is clear that the diffusion equation can be
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meaningful only if the scattering function o(y) falls
off sufficiently rapidly with increasing y. For the
present discussion let us in fact restrict our con-
siderations to functions which everywhere fall off
monotonically with increasing ¥ and which have
the property that there exists some critical angle
Yo < 1 such that

T Ve
[ avvsnvety < [ ap gsmve).  ®
For example, the scattering function

o(y) = a’/(¢¥s + ¥ 9)
has the indicated properties, provided ¢, < 1 and
n > 2.

On comparing Eqs. (6) and (9) we see immediately
that one necessary condition for validity of the
diffusion approximation is

& = 41/D > y; (10)

i.e.,, in no case can we take the diffusion equation
seriously for times £/v which are too short. This is
reasonable on physical grounds. After the first mean
collision time interval, the true distribution should
already be filled out to angles up to a value of order
¥o. Hence, not until enough time has elapsed so
that (6°)! exceeds ¥, can we accept any assertions
which follow from the diffusion equation, since the
latter presupposes that many scatterings have
occurred in any time interval of interest. Throughout
the remaining discussion we shall assume that the
condition (10) is satisfied.

It is also clear that the expansion to terms linear
in ¢* in the curly bracket term of (6) must surely
go wrong unless

0 K /v, (11)

ie., (11) is a necessary, though not a sufficient
condition for adequacy of the diffusion equation
solution. This too can be seen on physical grounds.
A typical collision involves a scattering through
angle of order ¢, In a sequence of N collisions,
with random changes in azimuthal angle, the mean
net turning angle (%)} is given by N%,. On the
other hand, the improbable sequence of N such
collisions in which the velocity vector remains
essentially in a fixed plane yields a net angular
deflection 8 =~ Ny,. We may be sure that such a
coherent chain of scatterings is not properly ac-
counted for in the diffusion approximation, hence
we expect the diffusion_equation solution to go
wrong when § > Ny, & 6/, as in Eq. (11).

We have said that Eq. (11) represents a necessary
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condition for validity of the diffusion approximation.
On the other hand, a sufficient condition is simply

P <6, (12)
as one expects on physical grounds and can verify
by inspection of Eq. (6). To improve this estimate
of sufficiency, we can employ the following con-
siderations. We ask for the contribution to 7(6, £),
for 6 >¢* = ¢°, which comes from a single large
angle scattering having taken place during the path-
Iength interval {. Since the bulk of the probability
distribution is confined to angles up to a value of
order § < 6, such a scattering must involve an
angular change which is essentially equal to 8 itself.
This single scattering contribution is therefore
given by

1.6, £) =~ 2mrnls(6), 6> 8. (13)
Notice, from (5) and (13), that
f,/6° = (2mn/4)Da(6); (14)
and from (3), that
1/D z (2mn/4) Yoo (¥o)- (15)

We first show that the total probability P(8, ¢)
for single scattering through angles of order 6 or
larger is small compared to unity: since ¥,<K <0<,
and since 6's(6) is a monotonically decreasing
function, we have

PO, ) =2F D f o(0") sin & do’
']

0 6°¢(0)

7 Viotwy <1
Since this probability is small we can certainly
neglect multiple large angle scattering for all  >> 4.
However, single large angle scattering can be neg-
lected only when £,(8, £) < fu1:(, £). The diffusion
equation is then adequate provided 6 satisfies (11)
and is also less than a critical angle 6, determined
by faie:(0s, £) = £,(6,, £). Thus,

~n6® Dee(6) < (16)

o [~ 0P N 2enlo(0),  (17)
or, from (5) and (15):
exp [—63/6%) & w(6/¢2(v2/0D".  (18)

These results can also be understood from a direct
comparison of (6) and (7). For 8 >> § the expression
in curly brackets in (6), regarded as a function of ¢,
has a sharp bump of height ~ exp [6°/¢°] and
width = 8, centered at ¢ = 4. In the integral on
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the right-hand side of (6) this bump makes a
contribution which is just of order £,(6, £)/¢; ie.,
it is just the contribution of a single large angle
scattering. Indeed, if the condition (11) is met,
the right side of (6) is essentially the sum of two
terms:

0f/0t R Ofairs/9¢ + f./¢. 19)

We can now summarize our findings in the follow-
ing manner: (1) The transition from the Boltzmann
to the diffusion equation can at best make sense
only if the scattering function «(y) falls off suffi-
ciently rapidly with increasing y—faster than ¢ ™*—
beyond some small angle ¢, (2) Even then, any
solution of the diffusion equation must be thought
of as representing a smoothing of the true distribu-
tion function over path-length intervals large
compared to &, = 1Dy, [see Eq. (10)]. Where the
distribution function has already come to be rather
smoothly varying in phase space, this delicacy is
no longer important; but if, as in the example we
have analyzed, the initial f is sharply peaked in
phase space, the diffusion solution cannot be
believed until an interval of time £,/v has elapsed.
In any case, if o(¥) is slowly varying in the interval
0 < ¢ < ¥, changes in the distribution funetion
over an interval A{ < {, can always be obtained
from a straight single scattering analysis. (3) If at
some initial time the distribution function is essen-
tially confined to a narrow region in phase space,
its subsequent development within a larger domsain
of phase space, over an interval £, < £ < D, is
adequately approximated by regarding f as a direct
sum of the diffusion equation solution f4s and a
contribution f, coming from single, large angle
scatterings:

! = fasee + fs, (20)

where we understand by this that f, is to be included
only for angles large compared to the mean angle
for fsise. In the sample problem analyzed above,
the domain of validity of (20) corresponds to
0 < 6 K 6*/¥, [see Eq. (11)], the f, term being
appended only for # >> & and becoming important
only beyond some critical angle 6, determined by
setting fuies & f, and taking the root, if any, which
lies well above 8. Finally, we must emphasize again
that a proper assessment of the errors involved in
any approximation scheme for treating multiple
scattering must depend on the details of the problem
at hand. The above discussion was intended only
to provide a very rough idea of the circumstances
which permit a treatment of the Boltzmann problem
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based on the diffusion equation approximation, as
supplemented perhaps by consideration of single,
large angle scattering effects.

We have fixed our attention here on the diffusion
approximation for classical point particles moving
in a scattering medium. Two other problems of
interest are the passage of Schrédinger waves
through a medium filled with randomly placed
quantum mechanical scattering potentials, and the
passage of electromagnetic waves through a medium
with fluctuating refractive index.® The exact equa-
tions for these problems are of course entirely
different from the Boltzmann equation (1). Never-
theless, under certain restrictive conditions the
motion of wave packets in these problems can also
be deseribed approximately by the diffusion equa-
tion (2). The errors which are introduced in this
approximation for situations involving wave packets
are of course entirely different than for classical
particle problems. We shall however not pursue
any further the physical basis of the diffusion
equation. We instead turn to the mathematical
properties of the equation, using for descriptive
purposes the language of classical point particles.

In the remaining sections we shall be concerned
with multiple scattering effects for problems of the
following sort, assuming without further apology
that the diffusion approximation is always relevant.
Suppose that a beam of particles impinges on a
scattering medium, the geometrical conditions being
such that most of the particles emerge from the
medium in times short compared to the diffusion
time D/v. (For example, it may be that some
characteristic dimension of the medium is small
compared to the diffusion length.) In such circum-
stances the net scattering angle will be small for
most beam particles. But we will be interested in
estimating the probability of occurrence for those
rare events in which the net scattering angle is
large. Multiple small angle scattering plays two
distinct roles here. For one thing it may compete
with single large angle scattering contributions to
the events in question. For another, even where
single large angle scattering effects dominate, their
quantitative contribution can be appreciably in-
fluenced by a possible loss of beam intensity within
the medium, this effect coming about from leakage
through the walls produced by multiple small angle
scattering phenomena.

These multiple scattering effects clearly depend
sensitively on geometrical details; but there is little

3 See, L. Chernov, Wave Propagation in a Random Medium
(McGraw-Hill Book Company, Inc., New York, 1960).
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hope of obtaining closed solutions of the diffusion
equation with general boundary conditions. Our
procedure then is to first analyze the time-dependent
diffusion problem for an infinite medium, in order
to extract insights which can suggest approximation
schemes for the time-independent problem with
boundary conditions.

II. THE INFINITE MEDIUM DIFFUSION PROBLEM

Suppose that at the initial time a particle is
located at the spatial origin x = 0 with velocity
vector v directed along the positive z axis. The
development in time £/v of the phase-space distribu-
tion function f(x, 8, ¢, £) is governed by the diffusion
equation (2); and for convenience we scale out the
diffusion length D by measuring all distances in
units of D. A full solution to this initial value problem
does not seem to be attainable in closed form, and
we resort instead to studying the dependence on
orientation of the velocity vector of the low spatial
moments of f, in particular for times which are
small compared to the diffusion time, i.e., for £ < 1.

Consider first the zeroth spatial moment

oo, = [ 1, 0,008, @)
which describes the distribution in velocity vector
orientation, irrespective of spatial position. For this
moment the diffusion equation reduces to

9 . a0 _ 8
1 ”)au

o 5 @)

=517 u = cos 0,
and the solution consistent with the given initial
condition is
b= 2 3 Gn+ DPOET,  (23)
n=0
where P,(8) is the Legendre function of nth order.
For £ >> 1 this series converges rapidly, and hence
is already in useful form. For £ << 1 we seek another,
more rapidly convergent representation. This can
be arrived at in the following manner. For ¢ < =
the Legendre function can be written as

sin [(n + o]

V2 [”
P.(6) = Tf,, da (cos 6 — cos )’ 24)
80 that
_ 1 * pACH)
4t = \/5#-/; da(COSO—cOSa) ’

2(e) = i @n + 1) sin [(n + Lale™"*1 .

nm—c0
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We now use the Poisson sum formula* to cast Z(a)
into the form

e} = gw f_: de e ?™*™ (22 4 1)
X Sin [(.'C + %)a]e—:(:ﬁl)l

—_ i —1\» ® —2ximz
X cos are” e,
For { sufficiently small, only the m = 0 term need

be retained in the above expression and we find

—m’/~“

drfo — 10 \/ i f (cos 0 — cosa)

Evaluating this in the limit £—0 (but for arbitrary 6)
we obtain finally

_1_<s 6 )i —05/1¢
fo,__.)o47rl m 6 ¢ )

For small 6 this agrees with the solution, Eq. (4),
anticipated earlier.

We next turn to the higher moments of the
distribution in the 2 coordinate of spatial position,
regarded as functions of velocity veector orientation:

(25)

Tan(®,D = [ 21, 0,0,0 0% @0)
These moments are clearly independent of azimuth
¢. Multiplying the diffusion Eq. (2) by 2", integrating
over all space, averaging over azimuth of velocity
vector orientation, we find

af(n:t) _i 2 af(n::)
7, L —#)

al o = pNfn-1:5)- (27)

This is to be solved subject to the initial condition
fwin = 0 at £ = 0, provided n > 0. It is evident
on inspection that the solution for f(,,,), in terms
Of f(n—l:z)) iS given by

f(n;s)(e) ()
4
- ﬁf a3 @m + PP, (g)e "D
4 Jy -

X [ a9 Pu®) cos 0@, ). (28)
Since the zeroth moment f, is already known, all
of the higher moments can be obtained in succession.

In particular, on using Eq. (23) for f,, we find
for f;.., the expression

¢ See P. M. Morse and H. Feshback, Methods of Theoretical
Physics (McGraw-Hill Book Company, Inc., New York,
1953), Vol. I, p. 466.
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e—(m+l) (m+2)l}

o = 5= 2 PulB)le™ " = . @9)
T m=0

As with Eq. (23), this expression is already in
convenient form for large £. For small £ we seek a
more rapidly converging representation. Using the
Poisson sum formula as before we find for the

limit £ — O the result

faww = {210, 0.
Now

2(0) l) = f(l:z)(e) f)/fo(ﬂ, () (30)

is the expectation value of the z displacement at
“time” £ for particles whose velocity vector makes
an angle 6 with respect to the z axis; so we have

z(6, £) - {(sin 6/6). (31)

This same result can be obtained in another way,
as follows. Substituting f,..,, = Zf, into Eq. (27)
for n = 1 and using the corresponding equation (22)
satisfied by f,, we find

2 07 i3 dlnf 92 _
% " oF teae 2 30 ao—coso (32)
where, in the limit £ — 0, we have

d

30 In f, = —8/2¢. (33)

To lowest order, Z must be linear in £; and to this
order we obtain

Z4 6002/96 = £ cos 9.

The solution, finite at 6 = 0, is just that given by
(31).

In order to estimate the dispersion about the
mean given by Eq. (31), we turn next to a computa-
tion of the second moment f,..,(8, £). The expression
which emerges directly from a substitution of (29)
into (28) is not in convenient form to display the
behavior of this function in the limit as £ — 0.
In order to study this limiting structure, we work
directly with the differential equation (27), writing

fain(8, €) = [£(6, ) + k6, OIfo(6, ). (34

We substitute this into (27) for n = 2, exploit
the same equation for n = 1 as well as Eq. (22),

and find
0z\? oh  d%h ah]
—2<ao> + [al o T~ 0%
ah 9
—25, o mfe=0. (35
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From (31) and (32) we now see that

h(8, £) — *H(8), (36)
10
and in this limit (35) reduces to
sin 6\ |’
+3H 2[(50( 7 )] @0
This has the solution
sin 6 _ Si]l 9 2} __2’“ 3
03 (59 enr- 8} 2 2
(38)
The dispersion about the mean is determined by
(A2 = 2% — 2* = {*H(9). (39)

We consider next the question of the fransverse
spread with time of a group of particles all located
initially at the origin, with velocity vectors directed
along the z axis. Form the moments

00,0 = [ 2f(x, 0,0, 2. 40)
The diffusion equation then reduces to
af(n:z) — {_a_ — 2 af(n:x) 1 az,f(n:z)}
= nsin 0 €08 ofa-r;r,  (41)

which, for n > 0, must be solved subject t0 f(n,.y = 0
as £ — 0. This has the solution

¢ © A
f(n:z)(oyfa;l):nﬁ at’ z Z)‘

A=0 m=—

1:(0’ So)e-w)‘()vf-l) (&=2')

X [ a0 V7@, o) sin 0 008 $furinl?, &, 0),

(42

where the Y% are spherical harmonic functions.

To determine the moment functions we proceed
exactly as before.

Thus, for the first moment we set # = 1 in

Eq. (42) and substitute for f, on the right side the
expression given by Eq. (23). We then find
o8 @ KA i

52 25 2 7 [Pans(®) — PO

X {e-n(u—l)£ —_ e—n(ni-l)i}‘

f{l z)(e; 1 2] ‘5)

43)

This expression is, of course, not in useful form
for small £ To bring out the behavior for this
limit, we work directly, as before, with the dif-
ferential equation (41). We set

f(l:z)(0) P c) = j(e: @, {)fo(a: l)) (44)
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insert this into (41), and, in the resulting equation
for Z, retain only the linear term in an expansion
in powers of {. The result is given by

£(0, ¢, ) — £ cos ;a(l—i o8 0)-
-0 6

(45)

What this signifies is the following. Let p be the
projection on the £ — y plane of the position vector
x; and let v, be a unit vector directed along the
projection of v in the z — y plane. Then the expecta-
tion value of p is expressed by

1 — cos @
(@ - (L= 0y,

To estimate the dispersion about the mean we
turn to the second moment f;..,(8, », £). Repeating
procedures used above, we write

fﬂ;z}(es @, 8 = {iz(ez e, £) + 98, o, «5)}f0(3, ‘t)v @7

and insert this into (41) for n = 2, exploiting the
corresponding equations for n = 1 and n = 0.
For small ¢, g is found to be proportional to ¢°;
and with

g(8, o, £) = P{G,(8) cos® ¢ + G,(8) sin” o},
-0

(46)

48

one obtains the results

o (9 o
- 2(————-~1 = ")’}, (49)

{ 2sin 6 1}‘
(1 4 cos 6)

For small values of 6, one finds @, ~ G, &~ 3.
From (44), (47), and (48) we observe that, for
particles whose veloeity vectors lie in the z—z plane
and make an angle ¢ with respect to the z axis, the
fluctuations about the mean spatial position in the
z—y plane are given by

G4(8) =

G(6) = (49"

(b2 = &7 = £°G.(9), (50)
@) =y = JsGs(f?)- (50"

We have discussed above the distribution moments
in z and y for given veloeity vector orientation.
One can also easily find, directly, or from the above
results, the moments of the distribution function
averaged over velocity orientations. These are
given by

2 2

F=g=0; 2=y =¥,
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III, MODEL FOR THE STEADY-STATE
FINITE MEDIUM PROBLEM

For most practical purposes, it is not the time-
dependent diffusion problem for an infinite medium
that is of direct interest, but rather the steady-state
problem of a beam impinging on a finite medium.
This latter problem, however, poses formidable
mathematical difficulties. In fixing attention on the
infinite medium case, it was our hope that a good
enough physical picture of multiple scattering would
emerge so as to permit at least a qualitative analysis
of the steady-state problem. In the present work,
we are restricting our interest to situations in which
the mean path length of a beam particle traversing
the medium is small compared to the diffusion
length.

Let us then recapitulate some of the results
obtained above for the infinite medium problem,
in the limit of small path lengths. Recall that all
distances are measured in units of the diffusion
length D. Suppose that a particle is located initially
at the spatial point x, with velocity vector v,.
Choosing the 2z axis to lie along the direction of v,
we describe the orientation of the velocity vector v
at any later time by the polar angle ¢ and azimuthal
angle o. For small times ¢ = £/v(£ < 1) the distribu-
tion in velocity orientation, irrespective of spatial
position, is given by

v, ) = g () e
o 47l \sin 6

and the mean spatial position, for given orientation
of the velocity vector, is determined by

8, ¢, £) = xo + £ cos ¢<}_:.§9§_2) ,
50,00 = 1o + tsin o L2 | )

56, 8) = 2 + c(sm—ee)

The dispersion about the mean is indicated by
Eqgs. (39), (50), and (50).

The results on mean spatial location can be given
a simple geometric description (see Fig. 1). For
given velocity vector v, the mean position vector
% is just the position vector which a particle would
have if it had travelled at uniform speed v on
eircular arc of radius B = £/6, starting at the initial
time from the point X, with velocity v, and ending
up at “time” ¢ with velocity vector v. We speak
of this, in short, as motion along a circular are.

If we are prepared to neglect dispersion about
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the mean, the full distribution function in phase
space would be written

h(x, v; X, Vo, ) = -—}-(———0 )*e“"’“
0 v, Y ) = 2 G o

X 8z — 2oy — Pz — 2).

We adopt this approximation in what follows.

Suppose now that we wish to deal with a steady-
state situation in which there is a steady source
of new particles. Let ®(xVo) be the source function,
which describes the rate at which new particles are
created in a unit element of spatial volume centered
on X, and in a unit element of solid angle centered
about the direction of v,. The steady-state distribu-
tion is then given by

f(, V) =$f:dt

(52)

X fq)(Xo, vO)fl(x, V; X, VQ, d) dsxo dﬂo. (53)

Of practical interest, we consider the case of a
beam of particles impinging on a finite medium.
Suppose that the beam travels along the z axis,
and that the beam flux F is uniform over a plane
normal to the z axis. For this situation, (53) re-
duces to

ha =L [ ae

X fx fl(x7 V; X, Vo, {) dxﬂ dyﬂ: (54)
where the spatial integration goes over that portion
of the surface of the medium which intercepts the
beam, with z, = 2,(%,, ys) evaluated here on the
surface. In the approximation envisaged in the
present discussion, the boundary conditions are
taken into account by our setting f,(X, v; Xov,, £) = 0
for any point (x, v) in phase space which does not
connect to the point (%, Vv,) according to our
picture, described above, of motion at uniform speed
on a circular arc which lies entirely in the medium.

Let us turn immediately to an example, which
will serve to illustrate the procedure and also the
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nature of the errors involved. Suppose that a beam
of particles is incident normally on a slab of thickness
d < 1 (recall again that all distances are measured
in units of the diffusion length D). Choose the z axis
to lie along the beam direction and take the slab
to be infinite in the z and y directions (see Fig. 2).
The distribution function f depends only on the
velocity orientation angle 6 and on the spatial
coordinate z. From (52) and (54) we find the result

e

where F, is the beam flux.

We may expect that for not too large values of 6,
and for spatial positions well away from the bound-
ary surfaces, 0 << z < d, this taking over of results
for the infinite medium problem is reasonable, since
the infinite medium function f has in any case
received little contribution here from particles which
have passed beyond z = d or below z = 0 in their
prior history over the short ‘‘time” interval
{ = 20/sin 8 and which could therefore know that
the boundaries really exist. An appropriate measure
of error is provided by the infinite medium estimate
for |Az], the root mean square fluctuation about
average 2(9, £). According to Eq. (39) this is given by

|az| = £HY(0).

Now in adopting the approximations which leads
to (65), we have in effect taken over the infinite
medium results, with the replacement

[}
] \J
1

£ — 20/sin 6. (56)

This ignores boundary effects, which must surely
matter for points near to one or another of the bound-
ary surfaces. The uncertainty in the identification
(56) is measured by

|AL] ~ |Az] (8/sin 6) ~ 2**(8/sin 6)*°H*(6).  (57)

In particular, suppose that we are interested in
computing the angular distribution of the beam
particles which emerge from the upper surface at
2z = d. The flux F,(6) of transmitted particles, i.e.,
the number of particles crossing a unit area of
surface per unit time interval in a unit element
of solid angle, is given by

E. E. SALPETER AND S§. B. TREIMAN

F.(0) = vf,(8, d) cos 6,
The error corresponding to (57) is given by
|AF./F.| ~ |(8sin 6/4d) — 1| [dH(6))[6/sin 6]*.

In the small angle approximation we have H(8) ~ 6%,
hence our estimate for the transmitted flux begins
to go wrong for # = d*. For small slab thicknesses,
d « 1, this limiting angle greatly exceeds the mean
angle § = 2d%.

In summary, we suggest that the transmitted flux
is adequately represented by

6 < im. (58)

E .
) ¢~ *2940(0, d) cos 6, (59)

F [/}
F(6) = _"(sm

4dnd
where the correction factor C(8, d) is close to unity
for angles satisfying

9 < dt; (60)

and even beyond this limit we expect that C(6, d)
varies more slowly with 6 than does the exponential
factor in Eq. (59).

As for the flux of reflected particles, F,.(6) =
vf1(8, z = 0) cos 6, § > 3w, an estimate based on
(55) is totally worthless; this equation gives a
vanishing reflected flux. For thin slabs we indeed
expect F, to be small, but at the present level of
approximation we are unable to estimate this small
quantity. Regarding (55) as a first-order approxima-
tion to the true distribution function f, we can now
proceed to a second-order correction by appealing
to BEq. (53), with the source function ®(x,, v,) set
equal to vf,(x, v). That is, with

f(xl V) = fl(x7 V) 4+ fz(X, V) 4+ .-

we write

£, V) = f:dt

X f F(Zo, VOfi(X, V; Xo, Vo, 1) d*2o dQo. (61)
Recall, however, that f,(x, v; X,, V,, £) is set equal
to zero for points (X,, Vv,) and (%, v) which are not
connected by motion on a circular are, in the sense
described before. For the rest it is determined by
Eq. (52); and f,(X,, Vo) is as given in (55). Even
for the simple problem at hand, the integrations
of (61) cannot fully be carried out in closed form.
However, we see that f, is a product of two first-
order distribution functions corresponding to mean
motion of a beam particle on a path composed of
two circular arcs (see Fig. 2); and the main con-
tributions to f, come from those paths for which



MULTIPLE SCATTERING IN THE DIFFUSION APPROXIMATION

the radii are as large as possible, consistent with
geometric constraints. The probability associated
with a turn through angle 6 on an arc of radius B
is R'¢"*%; and indeed, a rough analysis of (61)
for the particular case of f, evaluated at the lower
surface z = 0 gives

f.(0,z = 0) ~ ée%x/w,-s./w,(%) ,

where
6 =3%m, 6,=0— 06, R =d, R, =d/(1 —sin 6).
Hence, our estimate for the flux function F,(8) for re-
flected particles, F,=v/(6, 2=0) cos 6=1vf,(6, 0) cos 6,
is just
F,(6) _ cos 8

F, = d

X exp {—(1/4d)[6(1 — sin 6) + 3wsin 6]}. (62)

We believe this to be “exponentially” correct in its
dependence on .

As further illustration of a second-order effect,
suppose now that the incident beam makes an
angle o with respect to the slab, as shown in Fig. 3.
We ask for the flux of directly back-scattered
particles. There is no first-order contribution here;
ie., no circular arc lying in the medium leads
directly to back scattering. In second order, however,
the relevant paths are available, composed of two
circular arcs. Once again, the main contributions
come from paths which involve the largest possible
radii. Employing the rough kinds of estimates used
before, we find

.2
F, _sin @ m01/4R1=0:/4Rs
~
F, d
with

b =71 — o,
R, = d/(1 + cos a),
hence
Fy/F, =~ (sin’ o/d)
X exp {—(1/4d)[x(1 + cos @) — 2a cosal}.  (63)

It is clear that the approximation scheme being
described here for finite medium diffusion problems
is at its worst just at the surfaces of the scattering
medium for grazing orientations of the velocity
vector. At these points in phase space, our technique
of following the mean motion of a particle, with
neglect of dispersion, amounts to a violent maltreat-
ment of the boundary conditions of the problem.

02=Cl’

R, = d/(1 — cos a);
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The distribution function which we obtain [propor-
tional to sin”™® « times the expression in Eq. (63)]
is in general nonvanishing for precisely grazing
angles at the boundary surfaces. On the other hand,
it is physically clear that the true distribution
function must vanish at the boundary surfaces for
grazing orientations of the velocity vectors. Sim-
ilarly, it is physically clear that in the limit of
very small grazing angle for the incident beam, the
distribution function at all angles appreciably dif-
ferent from the beam angle will become very small.
It is possible to show, from the principle that
transverse momentum is conserved on the average
in collisions on a spherical scattering center, that
the distribution funetion vanishes no more rapidly
than linearly in the grazing angle as it approaches
zero. We conjecture that Eq. (63) is of the correct
order of magnitude if o > d << 1 and that it should
be multiplied by a factor of order of magnitude
(a®/d)”, where the exponent » lies between zero
and one-third if o® <« d. However, we have been
unable to prove this conjecture rigorously or to
estimate the value of the exponent ».

As discussed in the Introduction, under certain
conditions the Boltzmann function for a finite
medium problem can be regarded as a direct sum
of two distinet terms. One of them describes con-
tributions from multiple, small angle scatterings;
the other, from single, large angle scatterings. For
large net scattering angles the latter effect may
well dominate. Nevertheless, even here small angle
scattering can play an important, if indirect role,
in producing a leakage of beam particles through
the boundary surfaces of the scattering medium.
The general reasoning is clear enough. It will suffice
here to illustrate this leakage effect with a simple
example.

Suppose that a beam of particles is incident
normally on the face of a long cylinder of cross
sectional radius R. Once again, we measure all
distances in units of the diffusion length; and let
us suppose that B <« 1. It is clear that the beam
intensity will fall off with increasing penetration
distance, owing to the losses induced by multiple
small angle scattering effects. In order to estimate
an effective penetration distance, we can appeal
to Eq. (52). Roughly speaking, at distance z into
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the cylinder, the mean transverse displacement of a
beam particle will be given by r ~ 28 ~ 2}. We
therefore expect the beam intensity to begin falling
off exponentially as a function of z for z = R}, ie.,
the effective penetration distance is of order R'.

More precisely, from (52) we find for the Boltz-
mann function

1 I"v R 2x
fr,2) = - <70> _/; 7o dr, deoo
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X exp{ 3

_rz - r: + 2"0 cos (00}
2z ?

where F, is the initial flux. In particular, the
intensity on the axis is then given by
F(, 2)/F, ~ e %%,

confirming that the exponential fall-off distance is
z, ~ R
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Milne problem solution, the solution for a constant source in one half-space, and the Green's function
solution are obtained for two adjacent half-spaces. These problems have been solved previously by
other methods. Here the derivations are greatly simplified by using Case’s method.

1. INTRODUCTION

HE one-speed neutron transport equation has

been solved in closed form for isotropic scatter-
ing in full-space, half-space, and two adjacent half-
space media using a number of rather cumbersome
techniques.'~ Recently Case® has developed a new
method for treating the one-speed transport equation
in which the solution of the general problem is
written as a superposition of the singular solutions
of the homogeneous equation. Several full- and
half-space problems have been solved using this
method,®” including certain types of anisotropic
scattering.®"®
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In this work Case’s method is applied to three
problems for two adjacent half-spaces with isotropic
scattering. In Sec. II, we review the normal-mode
solutions. In Sec. III, we consider some of the
general features of the two-half-space problems.
In Sees. IV, V, and VI, we solve the Milne problem,
the problem of a uniform isotropic source in one
half-space, and the Green’s function problem,
respectively.

II. THE NORMAL MODES AND THE HALF-SPACE
FUNCTIONS

Assuming isotropic scattering, the homogeneous
one-speed neutron transport equation for plane
symmetry is

aa//(x, 1) f_ W) dw, (LD

+ ¥z, p
where y(z, u) is the angular density, z is the distance
in units of mean free path, u is the cosine of the
angle between the neutron velocity and the z axis,
and c is the average number of neutrons produced
per collision. The solutions of Eq. (I1.1) as discussed
by Case;® consist of two discrete modes;

Voul(Z, 1) = dou(m)e™", (11.2)

where

$o:(u) = e/ (o F W), (I1.3)
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and =+, are the two zeros of

AG) =1 - —f du/G — 1)
=1 — evtanh™ (1/»), (11.4)
and a set of continuum modes
\l/v(xy I‘) = ¢r(ﬂ)e—2/'; (II'S)
where
é,(u) = 3P/ — W] + N)o(u —»),  (IL.6)
and
Ap) =1 — cvtanh™ », (I1.7)

and » is real and in the interval —1 < » < 1. The
P in Eq. (I1.6) signifies the Cauchy principal value.
Notice that A(v) has a cut from —1 to 1 in the
complex » plane. If we define A*(v) and A~(») as
the boundary values of A(») approaching the cut
from above and below, respectively, we have

A*() = MNp) £ (o). (1I1.8)

In obtaining the solution to the general half-space
problem, Case® constructed the following function:

S P {}r[) e du > 8T8 A (p.)} (I1.9)

Some of the properties of this function are®:

(1) It is analytic in the complex z plane eut from
0 to 4-1.

(2) It is nonvanishing, along with its boundary
values, in the entire finite z plane.

(3) It goes as 1/z as z approaches infinity.

X@) =

(4) Its boundary values satisfy the *“ratio
condition”
X*0)/X ) = A*G)/A(); 0<y <1, (11.10)

(5) It can be shown to satisfy the following

identities:
_ [ e X
X@) = f ko SR 1)
X@X(—2) = AR)/[A — o)6; — 27)], (I1.12)
X©0) = 1/ — o), (I1.13)
__¢c ’ p dp )
Y=gl . e—drwatrsy ¥

III. THE TWO-HALF-SPACE FUNCTIONS

Two adjacent half-spaces may be characterized
by the following convention. Let = 0 denote
the interface, and let the subscripts 1 and 2 denote
the quantities appropriate to the right- and left-hand
half-spaces, respectively. The solutions of the
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transport equation will then involve ,,(z, x) and
Yios(x, 1) for z > 0; and ¢,,(z, u) and Y. (z, )
forz < 0.

A problem which is encountered in the solution
of two-half-space problems is the expansion of a
function y’(u) in terms of the ¢,,(u) for 0 < » < 1
and ¢;,(u) for —1 < » < 0. That is, functions
A,(v) and A,(») are sought such that

Ve = [ A6 &

1
+ [ 40euw d.  aILy
The construction of this expansion has been
discussed by Case.® We will repeat the relevant
parts of Case’s discussion here. Let us introduce
the following notation:

c(p)={c“ 0<u<l,
Ca, -1 <u<0;
AQ) = {A,@), 0<u<l,
] Az(l‘): -1 << O; (1112)
A = {Al(u), 0<u<l,
Ap) = {)‘l(ﬂ)) 0<p<l,
)‘2(1-")) —1 < » < O.

With this notation, Eq. (IIL.1) can be written as
follows:

7| (v) dv.

¥ () = MwA) 4 3P Blan (I11.3)
Now we introduce the function
NG = 5 f ;((”v)”A(”) &, (IIL4)

If A() is sufficiently well behaved, N(z) has the
following properties:

(a) It is analytic in the complex z plane cut from
—1tol.

(b) It goes to zero at least as fast as 1/z at
infinity.

(¢) It is bounded by D+/|z & 1|7, where D, are
constants and ¥ < 1, as z approaches F1.
The boundary values of N(z) are

o L [ cGlAG)
N*u) = 21r1§P[ 2 —w?
i%c—(‘—‘)“;—(")- (IIL5)
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Equation (II1.3) can be written in terms of A(z) and
N(2) as follows:

pe() ' (1)

A (I‘) + N _
N (M)N () — N (u) = 24~ () (I11.6)
The solution of Eq. (III.6) for N(z) is®
where
x® = X,(2)X.(—2), (I11.8)
and
() = Fluc)]x” @w/A™ W] (IT1.9)

Since x(z) ~ 1/2° as z approaches infinity, N (z) ~ 1/z
at infinity, as required, only if

[ 46w au = o,

and (I11.10)

f_ll wy(w)y' (w) du = 0.

Hence A (1) may be determined from Eqgs. (II1.5)
and (II1.7) for any ¢/'(x) that satisfies Eqgs. (II1.10).

Also, x(2) satisfies a number of useful identities
similar to those for the half-space function X(2).
The derivations of these identities are entirely
analogous to the half-space cases, so we will omit
the details and simply state the results.

@) = f_‘l“fz(”)__d:, (ITL.11)
(o) = f 1 MZ(”_) ‘:" (111.12)
x@) = 35 = ¢2) f_ol Xz(n)(v%jil—(ﬁlgl(; —2)
Ll e e e D
@) = g0 | 0 X2<u)<5ozX —(”3 Si& )

[ 12X (—p) du
+tou - cofo X6 — D =g 1

IV. THE MILNE PROBLEM

For the Milne problem, the angular density
satisfies the following equation:

a x,

Won |y,

= g—lf_l iz, p)dy’, >0,
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z <0, (Iv.1)

c 1
2 [ v w) aw,
-1
with the following boundary conditions:

® lim y(z, 1) = dro-(w)e™"""

P

(i.e., neutrons are assumed to enter the system at
plus infinity, and ¢, < 1).

@ lim ¢(z, u) =0
(e, ¢, < 1).
@ (07, w) = ¢(0*, )

(i.e., the angular density is continuous across the
interface).

Boundary conditions (1) and (2) require the
following form for the expansion of ¥(z, u):

\b(x) l‘) = ¢lo_(ﬂ)ez/vu + a0+¢m+(“)e—z/v“

1
+ [ 4G b, 2> 0;
0
= "ao—¢zo—(ﬂ)ex/y“
0
— f AW (We™ v, <0. (IV.2)
-1

From boundary condition (3), we have

v = [ 4080+ [ 4006 b, (V3

where

‘I’,(ﬂ) = _¢1o—(#) - ao+¢1o+(ﬂ) - ao-¢2o-(ﬂ). (IV4)

From the analysis of See. III, the solution of Eq.
(IV.3) can be written down immediately,

Ap) = 2/w®IIN'G) — N"()], (IV.5)

where
1 [ vV W) e
2rix(2) Jo1 p— 2

N@) =
The coefficients a,. and a,- can be determined from
Eqgs. (I11.10), (III.11), (II1.12), and (IV.4),

Qs = X(—Vm) (Voz _ Vol)
o X(Vm) (Voz + Vol)

X(_VOI) 2(311’01
X(—Voz) Cooa(wo2 + V01)

(IV.6)

AQo- =

The expression for N(z) can be simplified by using
Egs. (IV.4), (IIL.11), (II1.12), and (IV.6),

[h10-() + Go+$10+ @) + Go-b20-(2)]

1 01V01X( —Vo1) Vo2 — Vo1 _
2wt (”01 — 2 )X(z) voa + 2

NG = —5

+ 5= (Iv.7)
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The expansion coefficient A () can be determined
from Egs. (IV.5) and (IV.7),

_1__ Cﬂ’gl(”oz - Vm)X(—VOI)
27t (Vgl - 1'2)(1’02 + V)

11 ]
X [xw) a0
One can show that the following identity holds
for the x-functions:

w(®) _
N AQ@) =

N S 1
x'0)  xG)
= _clﬂv ( 1') .__,,2 — .
= TOLE Xumy) P~ =), v >0
—earis  Xo0) 2 _ me oy
A X P2 — 7 )A — ), » <O
(IV.8)

Hence,

_ _01(1 -y Cl)vgl(l’oz — vo)x(—7e) X (=)
4:6) = G + VOO TS~

Cz)Vm(Voz — vo)X(—vo) oz — V)Xz(”)
(Vm -V )Az(_V)Az(_V)Xl(V)
(Iv.9)

The solution of the Milne problem for the angular
density is complete since all of the expansion
coefficients in Eq. (IV.2) have been determined.

The expression for the angular density at the
interface (x = 0) can be further simplified. Notice
that the angular density at the interface can be
written as follows:

\(’(07 ﬂ)

¢, (1 —

A:(V)= -

= {‘ﬁxo—(ﬂ) + a0+¢10+(ﬂ) + f(”')’ M < 0) (IV.].O)
—Go—pzo-() — g(u), r>0,
where
_a [TvA) dy
f(Z) - 2 o vy —z !
_c [Pv4,0) dv
9@ = 3 =z

The functions f(z) and g(z) have the following
properties:

(1a) f(2) is analytic in the complex z plane cut
from 0 to +1 and vanishes at infinity.

(1b) g(2) is analytic in the complex z plane cut
from —1 to 0 and vanishes at infinity.

(2a) f(z) has a discontinuity across the cut
given by

f(l‘) - = oA, (w)].

2 = Vox In I:l’ol + voz Xl(vm)Xz(_l’m):l
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(2b) g(z) has a discontinuity across the cut
given by:

g* W) — ¢~() = milend,w)].

One can construct functions satisfying conditions
(1) and (2a), and (1) and (2b), respectively. By
Liouville’s theorem, these functions are unique.
Thus, we can write'

f@) = T@) — ¢10-(2) — Go+d10+(2), (IV.11)
9(2) = RB(®) — ao-20-(2),
where
(o2 — Z)CleX 2@ X1 (—va1)
T = (o1 — 2oz + 20) X1 (@) Xa(—ver)
and
R() = c(1 — cl)Vngl(_z)Xl(—VOI)

—(1 — €2) oz + 2)(oz + v01) X 2(—2) X5 (—v51) .

From Eqgs. (IV.9) and (IV.10), we can determine
the angular density at the interface in terms of
X funetions,

Cle(Voz M)Xz(ﬂ)Xl("‘Vm)
—u )(Voz + Vox)Xl(ﬂ)Xa(—Vol)

u<0;

e(l — CI)VOIXI( wX1(—vo)
(1 — )2 + w) oz + vo1) Xo(— ~wWXy(—vo)’

> 0.

¥, u) =

(Iv.12)

The total density and current at the interface are

b = [ 90, ) da,

10 = [ w30, ) e

-1

These integrals can be done using Eq. (II1.13)
and (II1.14),

_ 2011 — e )X i(—vo1)
o) = (o2 + vor)(1 — Cz)in(“Vm) !

§0) = —vul(l — €)1 — ¢)*p(0). (IV.14)

One further quantity of interest is the extrapolated
end point z,, given by

0= e"lo/n: + o elo/'o

(Iv.13)

Iv.1l
Yo1 = Vo2 Xl(—Vox)Xz(Vm) ( 5)

The results of this section and many of the

10 Note that T'(z) and R(z) supply the proper discontinuity
and f(z) and g(z) have removable singularities.
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results in the following sections can be compared
to Davison’s' results by recognizing the relation
between the X function and Davison’s & function,

RG@/w) = (1 + w)X(—ppo(l — )

Similarly, a comparison with Chandrasekhar’s®:®
results can be made by recognizing the relation
between the X function and Chandrasekhar’'s H
function,

H@) = 1/0o + w1 = 0)*X(—p).
V. THE UNIFORM SOURCE

Consider a uniform, isotropic source in the right~
hand half-space. The transport equation is

alﬁ(x, I-‘)

+ ¥(x, »)
=%lf_1 Ve, w)dy’ +s, 23>0,
e ! ’ ’
=§—f_1¢(x,p.)du, z <0, V.1

with the following boundary conditions:

(1) lim \P(CE, Il')

T

@) lim Y(z, ) =0 (.e.,c <1),

z——®

(e, < 1),

@) ¥0", w) = ¢07,n) (continuity).

The expansion of ¥(z, u) in the normal modes,
including the restrictions of boundary conditions (1)
and (2), is

—z/%0a

‘p(x, I") = 'I——_ST;:_I — Qo+P10+€

+ [ Ao b, 7> 0;
1]
= ao—¢zo—(l‘)ez/'"
- f A0 b b,  z<0. (V.2)
-1

Boundary condition (3) then requires that

v =[ 40swa+ [ 46mEs, T3
where
V() = ao-¢pa0-(1) + Gosdros(w) — 8/ — ).

Again, we can determine the discrete coefficients
from Eqgs. (II1.10), (II1.11), and (I11.12),

aos = —28/(1 — c)ewovor + voa)x(oy),
Go- = '_28/ (1

V.9

— C)Cvoa(vor + vo2)X(—7az).
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The expression for N (2),

1
2rix(e) J-

7(") ¥ (l-‘) dp,

TH—2

N@ =

can be evaluated by using Eqs. (II1.11), (I11.12),
and (V.3),

N@) = [ao+¢1o+(z) + Go-¢p0-(2) — 1—¢ :|
1 @o+CV01X(o1) Qo—Caosx(—702) .
- 27rix(z)[ Wm—2 T 2u+d ] .5)

The continuum expansion coefficient can be com-
puted by using Eq. (II1.5),

8(”01 + V)Xl(_”)
oz + ”)Xz(—'V)A*i(V)A_l(V) ’

—— —8(1 - 62)(1/02 — F)Xz(v)
Az(l') - 1~ ¢))wo, — V)Xl(V)A;(_V)A;(—V) )

where we have used the explicit expressions for
@y, and a,- [Eq. (V.4)], and Eq. (IV.8). Thus the
solution of this problem is complete since the
expansion coefficients in Eq. (V.2) have been
determined.

There is a further simplification in the expression
for the angular density at the interface,

Ap) = —

(V.6)

¥, 1) = {S/ (1 = 0) = Goudios) + f), 4 <0,
o-20-() — gu), u>0,
V.7
where
_a [frA0)d
fe) = 2, v—2z "’
_a (v d
g(Z) B 2 1 vy — 2

These functions f(z) and g(z) satisfy conditions (1a),
(1b), (2a), and (2b) in Sec. IV, with A,(x) and
As(u) given by Eq. (V.6). Again we can construct
unique functions satisfying these conditions,

sc,(l — ¢5)

f(Z) = T(Z) - ( —c )(1 ¢ ) + a0+¢10+(z)) (‘V‘S)
9@ = R(2) — sc./(c. — ¢,) + To—30-(2),
where
_ _sa(l — ) — 9)X,(2)
T = o = o) — )b — DX,
and

_8Cor + 2)Xi(—2)
BE) = = e)u + OXa—=D)
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The angular density at the interface now can be
determined by using these results,

¢(0, I‘)
_ sci(l — ea)(woz — 1) Xa(u) ___8¢ .
= - )om — %@ a—a’ * <0
86 (vo1 + wWXi(—p) _ S
h (€1 = )z + wWXa(—p) 6 —¢c’ # >0
(v.9)

The total density at the interface,
1
p(0) = f_ . Y0, u) du,
can be found using Eqs. (I11.13) and (I11.14),

2S5 -1] oo

17— C2

p(0) = .

There does not appear to be a corresponding
simplification in the expression for the current at
the interface, since we do not have an identity
similar to Eqs. (II1.13) and (II1.14) for 2*x(2).

V1. THE TWO-HALF-SPACE GREEN’S FUNCTION

Consider a monodirectional plane source in the
right-hand half-space. The transport equation
becomes

Y, u; x
it gx = _'”O) + ¥z, ; To, o)

! 8z — 20)d(n —
=%f_l ¥z, 1’5 2o, o) dp’ + (e z«g"r(ﬂ ”0),

x>0,
= %’f_ll Wz, 1’5 o, po) dp’, = <0, (VL1)
where
1) lim ¢z, 420, ) = 0 (&, 02 < 1),
(2) &S, 5 To, o) — YT, 15 o, po)
= ﬁ 8w — no),

(3) 10(0+) H; To, I"O) = 'P(O-: K; Zo, I‘O)'

A solution which conforms to boundary condition
(1) is

¥z, B; Zo, 1)
= ao+¢1o+(ll)3—‘/'"

+ f AGWuWe™ dr, > 20}

673
= _b0+¢x0+(ﬂ)6_2/’" — b0—¢10—-(ﬂ)e2/,"
1
- f By, (e dv, 0 <z < &o;
-1

= do—¢2o—(l-'v)e+:/'"

0
+ [ DO &3z <0, (V1.2)
Applying boundary condition (2) we have
(a0+ + b0+)¢10+(#)e—:°/"; + b°_¢10_(ﬂ)e='/’"
+ f {AG) + B6) s (we™"" dv
0 —zo/? 1
+[ BB b = 55 8 = k). (VL)

The ¢’s satisfy the following orthogonality relation:
+1
[ b ds =0 vy, (V19

where the indices » and »’ refer to both the discrete
and continuum eigenvalues. The normalization is®

+1
Nlo* = j:_l Wﬁo*(ﬂ) d#

CIVgl Cy _ _1_
=+ [v§,~1 v‘s’l]'
N3 =) = [ i) du
= yAT)ATR) 8 — V).
Using Eqs. (VI.4) and (V1.5) in Eq. (V1.3), we have

_ 1 P10+ (o)e™ "

(VL.5)

Qo+ + bor = o e
by = 1 ¢uo_(pode ™" ,
2r N
A@) + B@) = % s, (VL6)
Bey < SR o

2N, ’
Applying boundary condition (3) and the identity
(cr/ca)par(w) = ¢1,(w) + ller — €2)/c2]8( — "),

we have

v = [ Boww b

+ [ 30+ p0few @, 1D
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where
‘V(ﬂ) = _bo+¢1o+(ﬂ) - bo-d’m-(ﬂ)
_ o — & Sulu)e H(—) |
do—¢zo—(#) C 21I'N1([.L) ’
H@) = {1, z>0;
0, z<0.

Equation (VI.7) is in the form of Eq. (IIL.1),
and we can use the methods outlined in Sec. III
to determine the coefficients

B(V)y v > 0;
bo+, do+;
%B(u) + D), v <O0.
2

(V1.8)

Applying Eqgs. (II1.10, 11, 12) and (VI1.6), we have
Vozot 1 B

b + = = )
0 Cx”mx(”m)(”oz + Vox) (VI.Q)
do. = 2 vox — B
° Cav0aX(—vo2)(vo2 + vo1)
where
—zo/Vor
(o, o) = _071;;:_1 ¢1o—(ﬂo)er_ x(—7o1)
+ € — Gy oy, (uo)e” /'Xl(”) dv,
41r(1 - cz) L Na0)0s — V)X, 0)
€ — Cp v ¢1v(ﬂo)ex /’Xl(") dv.

+ dr(l —¢c)) Ju N (V)(Voz - 2)X2(”)

Applying Eq. (II1.4), we have

NE) = —50 (Bushos® + botbuo-() + do-dua-))

1
+ m { bo+¢m+(z)X(Vol)

+ bo—¢1o-(z)x("‘l'm) + do—¢2o—(3)x(“Voz)}

- 1 C; — C
2rix(2) 4m(1 — c2)

AND G. C. SUMMERFIELD

Mﬁg(ﬂo)ez X (IJ)
x [ N — 0% — DX

Now, using Eqgs. (IIL.5) and (VI.6), we have

(VI.10)

B() = ‘“{bo+¢1o+(V)X(V01) + bo—d’:o—(”)x(—l'm)

Cq

+ do—¢zo-(V)X( Voz) + m——)‘
[ 11l X ) }
~1 Nl(ﬂ)(ﬂ- - V)(Voz ) )Xz(#)

0o — (A — e) X\ (=)
e e ny SR ED

AQ) = —B@)
+ ¢u.(uoe™”/2xN10), » > 0.
D(V) = _c__l_ ¢1v(u0) To/¥ (V:Z _ Vz)(]- - CZ)XQ(V)

¢ 2N, (v) A AS)X. ()
X {bos+¢10+@)x(o1) + bo-pr0-¥)x(—201)
+ do-a0-E)x(—702)}

(e — )0he — ¥)X5()
4r A5 A0 X, ()

1 u(ﬂo)ez./uX 1 (#)
X P f. i 1w — »)0oa — 1) Xa(u)

(02 — )b (o) &
T 2me, AL AN 1(1/) !

Now with Egs. (VL.6), (V1.9), and (VI.11), the
Green’s function is completely determined.' In this
case, there does not appear to be a simplification
at the interface corresponding to that found in the
previous problems.

+

v < 0.
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Simple Derivation of the Faxén Solution to the Lamm Equation
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(Received 12 November 1963)

In this paper a Hankel transform technique is used to derive the Faxén solution to the Lamm
equation when the sedimentation coeflicient is constant and when it varies linearly with concentration.

HE properties of the Lamm equation for the

sedimentation of substances in a centrifugal
field have been studied by many authors.'™ A
solution to the Lamm equation which has proved
to be of great utility for practical applications is
that of Faxén. This solution describes the sedimenta-
tion of a substance in an infinite wedge rotating
at constant speed around an axis through the vertex
of the wedge. There have been several derivations
of Faxén’s result, many of which are rather com-
plicated in their mathematical details. It is the
purpose of this note to provide a derivation of
Faxén’s solution which is quite simple and to show
that the technique can be used to find the Faxén
solution for the Lamm equation when the sedimen-
tation coefficient depends linearly on concentration.

The Lamm equation is

6 _ 10| pdc_ 22
a  ror [TD or swrc:l, W

where w is the frequency of rotation, assumed
constant, s is the sedimentation coefficient, and
D is the diffusion constant. The initial condition
is usually taken to be ¢(r, 0) = 0 for r < r, and
¢(r, 0) = ¢, for r > r,. We shall, however, assume
a general initial condition. Let the dependent and
independent variables be subjected to the trans-
formations

y = 2e T ~ 2D
0 To » 0 S(J.)z'ro

(1 - e-f): (2)

where 7 = 2w’st, and ¢, and r, are constants intro-
duced to normalize the equations. The substitutions
of Eq. (2) convert Eq. (1) into

ay/am = 3’y/dy* + (1/y) o¥/dy, ®3)
as given by Fujita.® If one now assumes the separa-
tion of variables ¥(y, 1) = Y(y)N(3) to be valid,

* Present Address: Rockefeller Institute, New York, N. Y.
10. H. Faxén, Arkiv Math. Astron. Fys. 21B, 4 (1929).
2 W. J. Archibald, Phys. Rev. 54, 371 (1938).
3 H. Fujita, Mathematical Theory of Sedimentation Analy-
818 (Academic Press Inc., New York 1962).
(19‘5 é\;[ Gehatia, E. Katchalski, J. Chem. Phys. 30, 1334
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one finds for N(n)
N(n) = exp (—N'n), @
and Y (y) satisfies
' 1
Y+ Y'(y) + NY(y) =0 ®)

with the solution

Y{y) = AY.(\y) 4+ BJo(W), (6)

where J,(A\y) and Y,(Ay) are Bessel functions of
the first and second kinds, respectively. The only
solution of physical significance is one in which
Y(y, ) remains finite at y = 0. Consequently we
can set the coefficient of Y,(\y) equal to zero.
Therefore we are led to assume a solution to Eq. (3)
of the form

W, = [ oL0pe e, @

where g(A) is to be found from the initial condition.
The initial condition yields the relation

[ o700 ax = w5, 0). @®

This type of integral equation can be recognized
as a form of Hankel transform, and has the inverse

gi\) = Rj; uy(u, 0)J,0w) du. ©
We therefore have the representation
Yy, n) = f AMoQy)e ™" dx
]
X f wp(, O0Jo(w) du.  (10)
0

A change in the order of integration can be justified
for funetions ¢(u, 0) which are of interest, so that

v = [ ub(w, 0) du

X fo T ONT 0w AN, (1)
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The integral over A is known,®
f Mo T o)™ dn

0

1 1 w

e +u')/4vIo<2—?-;) Y(u, 0) du,

o . (12)

and leads to the representation

W, = = [Ty, 0w, 19

which is the form given by Faxén,' and Gehatia
and Katchalski.*
In particular, the initial condition

Y, 00 =0 0<u<2,
=1 u> 2,

leads to the solution given by Fujita®

1 Ty <@_‘E)
W, =5 [ e 1Y) du. (4

A similar technique can be used to find an exact
solution to Eq. (1) when the sedimentation co-
efficient is of the form

s = s(1 — ke). (15)

This problem has been discussed by Fujita,® who
derived an approximate solution valid only for
small values of the parameter (4Df)/rZ. In order
to reduce Eq. (1) to simpler form we introduce
transformations related to those of Fujita,

e = 2D/w’sirs, T = 2weset,

z = (1/r/r)’,

where ¢, is a normalizing value of the concentration,
and 7, is a normalizing value of radius. It is easily
seen that o« < 1 and that ¢/c, < 1 are necessary
for the sedimentation coefficient to remain positive.
The substitutions of Eq. (16) convert Eq. (1) into

% %{x[% ~ 6o — 0)]},

which must be solved with a given initial condition
6(zx, 0). Noticing that the operator in parentheses
in Eq. (17) is a Ricatti operator, we make the
further substitutions

a = kCo,

(16)
6 = ac/c,,

an

6= % Inu, {=1—¢", z =20}, (18)

§ G. N. Watson, A Treatise on the Theory of Bessel Functions
%:(;Jiamllz)rggge University Press, Cambridge, England.) Second
¢ H. Fujita, J. Chem. Phys. 24, 1084 (1956).

FAXEN SOLUTION TO THE LAMM EQUATION

leading to the result

du du 1du
N za (19)
which must be solved with the initial condition
u(z, 0) = exp } f z26(z, 0) dex. (20)
0

This type of linearization of a nonlinear dif-
ferential equation which describes a separation
process has been applied in the past to thermal
diffusion” and to general cascade processes.® How-
ever, those papers were concerned with a linear
rather than a radial geometry.

Again one can separate variables in Eq. (19)
and follow the same reasoning as used in the analysis
of Eq. (3) to find the general solution

ulz, §) = f " AL 026 g0 dh, @21)
where g()) is
a0 = fo " J.(o)ulo, 0) do. @2)

Hence, integrating over X\ in Eq. (21) we find

ue, ) =2 fo " w(o, 0) do fo MO0 d)

_ §zze—-'m"/; e-"’“L(;—;)u(cr, 0)do. (23)

The final form of the solution for 8(z, {) is therefore

(1=PPz, ) (l=¢, 1
bz, {) = 2tt Pi(z, ) - ( P +-2—$-> , (29
where
° —ot/4 a. ¥ 1-— g‘)*
Py, §) = ou(o, 0)e "1, ozl — ¢ do,
R
Pie 0 = [ ato, 0, (A=) g,

A more complete analysis of the consequences of
Eq. (24) will be published elsewhere.
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Phase-Space Formulation of the Dynamics of Canonical Variables*
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Statistical reformulation of quantum mechanics in terms of phase-space distribution functions as
given by Moyal using Weyl’s correspondence rule between classical functions and operators has been
extended to various different correspondence rules. The dynamical bracket in the Weyl correspond-
ence (the “Moyal” or the ‘“‘sine’” bracket) is shown to be a Lie bracket. It is further shown that if
the theory is restricted to Lie brackets of the form

[ul(p, 9), v(p, Q] = {f( il o

dq1 9ps - aq, apl>u(p1, 0)v(p2, 92)} ’

evaluated for p; = p: = p; 1 = @2 = ¢ after differentiation, then the only admissible functional form
of fis f(z) = Bl(sin ax)/a), where « and 8 are constants. A law of multiplication which is associative
and distributive with respect to addition is also introduced in each case. It gives a correct correspond-
ence between operator multiplication and the multiplication of classical functions. The dynamical
brackets obtained in each case are also found to be Lie brackets. Conditions on the phase-space
distribution functions to describe pure states are also given.

MAY 1964

I. INTRODUCTION

HE possibility of expressing quantum mechan-
ical expectation values as averages over phase-
space distribution of noncommuting variables has
been discussed by many authors.'”® The basic
problem one is interested in, is the following:®
Given a quantum mechanical state described by
the wavefunction y¥(g), one finds the expectation
value of any operator G(p, q) in the state ¥ by
the relation®

© = [ (@60, 0¥@dg. (LD

We now wish to determine a *“phase-space distribu-
tion function” F(p, q) of two variables, such that
the statistical average of the function G(p, ¢) with
respect to this distribution is identical with the
expectation value given by (1.1); i.e.,

@@, 0 = [[ 6@, 9F . 9 dpda = (G(p, 9. (12)

* This work was supported by the Army Research Office
(Durham).

1 E. P. Wigner, Phys. Rev. 40, 749 (1932).

t J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).

3 G. A. Baker, Jr., Phys. Rev. 109, 2198 (1958).

4T, F. Jordan and E. C. G. Sudarshan, Rev. Mod. Phys.
33, 515 (1961).

§ H. J. Groenewold, Physica 12, 405 (1946).
(19;;1;. Takabayasi, Progr. Theoret. Phys. (Kyoto) 11, 341

"E. C. G. Sudarshan, Lectures in Theoretical Physics,
Brandeis University Summer Institute, 1961 (W. A. Benjamin
Company, Inc.,, New York, 1962), Vol. 2, p. 178.

8 Ei g G. Sudarshan, Phys. Rev. Letters 10, 277 (1963).

9 We restrict ourselves to single degree of freedom. Gener-
alization to any finite number of degrees of freedom is how-
ever, trivial.

18 When no limits are specified, all integrals are to be
understood as extending from —« to 4.

It should be noted that since the operators p and
q do not commute,” the association of G(p, ¢)
with G(p, q@) may in some cases be ambiguous.
Several rules for the association of a quantum
mechanical operator with the corresponding classical
function have been proposed.'” The most commonly
used association is that due to Weyl” in which
a classical function is expressed as a Fourier integral;

6@, 9 = [[v(r, 06 drde;  (13)
the corresponding quantum operator is then de-
fined as that operator which is obtained by re-
placing p and ¢ on the right-hand side of Eq. (1.3)
by the corresponding operators.

G, q) = f [ 7z, 0= g a0, (1)

It may be easily shown that in this association the
operator corresponding to the function p™¢” is the
coefficient of [(m + n)!/mIn!]A\™u" in the expansion
of A\p + uq)™™. Other rules for the association
of operators to functions will be given later.

It was shown by Moyal® that if Weyl’s association
between classical functions and quantum mechanical

11 Their commutator is given by [q, pl. = 44. In the present
fwég:r, th% gﬁ)erators aredldenolted throughout by boldface
etters, an e corresponding classical funecti b di
(lightface) letters. 8 ons by ordinary

2 J. R. Shewell, Am. J. Phys. 27, 16 (1959); also see
references given in this paper.

13 H. Weyl, The Theory of Groups and Quantum Mechanics,
translated from German by H. P. Robertson (Dover Publi-
cations, Inc., New York, 1931), p. 274. e
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operators is used, then the following phase-space
distribution function is obtained:

Fol, 9 = 5= [ ¥ ~ 4o

X e Y(q + k) dr.

This expression is identical with the one first given
by Wigner." Moyal has further shown that with
this choice of phase-space distribution function, the
quantum equation of motion is equivalent to the
equation

(1.5)

aFW(Q! D, t)/at = _[Fy H]W; (16)

if the state of the system is considered time-depend-
ent and dynamical variables as time-independent
(Schrodinger picture). Here H is the Hamiltonian
of the system and the bracket [ ] (known as
“Moyal” or ‘‘sine” bracket) is defined by the
formula,

2. ) &

[A(pv Q)r B(pv Q)]W - ‘ﬁSln §{aq1 ap,
a2

~ 3¢ apl}A(p" 2)5®: 2)

1.7

Dr™=Pa=py
Q1=a3=¢q

with p, = p, = p and ¢, = ¢, = ¢ after differentia-
tion as indicated. If, on the other hand, the time
dependence 1is associated with the dynamical
variables (Heisenberg picture), then the equation
of motion for any variable G(p, g, ¢) is"

(d/dnG(p, ¢, 1) = |G, H]w. (1.8)

It can easily be shown that the operator cor-
responding to the sine bracket of two arbitrary
functions A(p, ¢) and B(p, ¢) is nothing but the
commutator divided by ¢4, of the operators A and
B corresponding to the functions A and B. That is,

if A®, Q- 4@, 9, B®, 9 - B, q),} 1.9
then (AB — BA)/ik— [A, Bly.

Further properties of these brackets have been
studied by Baker’ and Jordan and Sudarshan.*

In particular, Jordan and Sudarshan have shown
explicitly that these brackets are Lie brackets. How-

1t Note the difference of signs on the right-hand side of
Egs. (1.7) and (1.9). This is analogous to a similar situation
which holds in connection with quantum equations of motion,
expressed in density matrix notation, viz.,

Zh(ag/at) = _[9) H]-—v
15(8G/dt) = +[G, H],

where [ ]_ denotes the usual commutator.

(1.6a)
(1.8a)
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ever, their proof contains an error which led them
to some incorrect conclusions.'®

In Appendix A we give a corrected proof that
sine brackets do satisfy the conditions of Lie brackets
and show also that, if we restrict ourselves to the
Lie brackets of the form

{( 5 5° )
[ulv] = f aql ap2 - aqz apl

X u(plr ql)v(ph QZ)}m-pntm (1'12)
then the only admissible function is
f(z) = Bl(sin az)/a], (1.13)

where a and g8 are constants. (We note that Poisson
brackets correspond to the case & = 0.)

Besides the phase-space formulation based on
Weyl’s rule of associating operators with classical
functions, it is of interest to consider other phase-
space distribution functions when different rules
of association are used. It is the purpose of this
paper to examine systematically these various phase-
space formulations.

II. STANDARD ORDERING

We first investigate some consequences of the
rule of association in which the operator correspond-
ing to a classical function is obtained by replacing
g and p by the corresponding operators q and p
after ¢ and p have been put in a “standard” order.
By standard order is meant here the order in which
all powers of q precede all powers of p. Thus, for
example, if

G, 9 = 2 gmg"0",
then G, Q) = 2 gmq™p",

15 Thus, for example, according to Jordan and Sudarshan
(Ref. 4, p. 524), the bracket defined by

(2.1)

& (—1)Cm) ( 8 8 )2,.4-1
[u) v] - 'g (2n + 1)! aql apﬂ - aq2 apl

x u(pb QI)v(ph 112)

where C(n) are arbitrary (but which ensure the convergence
of the series on the right), is a Lie bracket. However, this
statement cannot be correct, for if we take, for example,
C(n) = by, v=¢p" and w = gp*,
then a straightforward calculation shows that the Jacobi
identity

[w, [o, w]] + [v, [w, u]] + [w, [u,»]] =0

is not satisfied.

(1.10)

3
u=ygq,

(1.11)
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or if
G(p, q) = ff 'Y(Ta o)ei(-rm-va) dT d0,

then G(p,q) = f f (r, O™ drdo.  (2.2)

A. Distribution Function

With the above correspondence, the characteristic
function of the phase-space distribution function
F 8 (p; q):

Ms(r, 0 = [[ Fep, 9 dpdg,  @3)

for a state defined by a wavefunction ¢(g) is given by

Mir, ) = [ Qe ™¥(g) dg

= [ e vig + iy dg. @9
From (2.3) and (2.4) we obtain
Fs@, 9 = o [[ ardo [ agrer@)
X Y(g’ + hr)e™ e
=& [ v ug +hdr. @5)

It may be noted that the phase-space distribution
function Fs(p, q) given by (2.5) even though being
normalizable, is not everywhere real. This was, how-
ever, to be expected since the correspondence such
as (2.1) or (2.2) does not always associate Hermitian
operators with real functions. It may further be
noted that if Fg(p, ¢) is integrated over one of
the variables, then the resulting distribution over
the remaining variable is positive-definite.'® It also
satisfies the constraint

ff dp dgF.(p, Q)¢ ™"/

X A(p: QI)A*@: Q2)|q,-a,-a 2 0; (2-6)

where A (p, g) is any arbitrary function of p and ¢
and A*(p, q) is its complex conjugate.

Fs(p, q) may also be expressed in the following
alternative forms:

Fs(p, 9 = W (@se™",

Fio, 0 = 5 [ 4*0 + 1o "6 do,

2.7
2.8

16 The same is true for the case of Wigner distribution
given by Eq. (1.6).
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where

o0 =17 [wae=rag @)

is the wavefunction in momentum space.
If we insert the expansion of the wavefunction
¢ in terms of an orthonormal set

¥ = Zl: ai(q) (2.10)

in the expression (2.5) for Fs(p, q), we obtain the
following expansion for Fs(p, q):

FS(p1 Q) = Em "Z ataan.f:n(pv Q),

where the phase-space eigenfunctions f5.(p, ¢) are
given by

2.11)

150, O = o= [ V@ Ug + ) dr. @12)

As in the case of Weyl’s association® the functions
fi.(p, ¢) form a complete orthogonal set, {in the
Hilbert space of the phase-space functions Fs(p, ¢)}
satisfying the relations

J[ 120, 0130, 0 dp dg = B b 81, @19
> T 10, o3, ¢)

=k 8(p — p’) (¢ — ¢'), (2.14)

and also the self-orthogonality relations
[ 0ddo= 5., @15)
2 fan®, @) = K. (2.16)

B. Dynamics
To study the dynamics, we must first find a
correspondence between the commutator brackets
and classical brackets. For this purpose we first
determine a “law’” for the product of two functions.
Let A(p, ¢) and B(p, ¢) be two functions given by

4@, 9 = [[ 6alk, 90 ahas,  @17)

and

B(p, ¢) = f éa(k, e "*? dk ds. (2.18)

Then according to the standard ordering law of
association, we obtain

AB = [ oo [ by db, ds, dsaballs, 5)6a0ts, 59

X eic,qeik;pei-,qeik,p

(2.19)
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Using the well-known identity'”:

L+M+}(L, M|~ ML [L,M]-
1

=cee (2.20)

where L and M are operators commuting with their
commutator, Eq. (2.19) can be written as

e =e¢

AB = f f dky dky ds, dssba(ls, )65(ka, 52)

X ei’hku.ei(a.+lg)qe‘i(k1+kl)9.

Thus, we see that, if & “law” of multiplication of
two functions A (p, ¢) and B(p, q) be given by

A XB
— [e—i'h(a’/al’ladn)A(pl’ ql)B(p2, qz)]p,-p.-pl

¢1*=aqs=a

(2.21)

then we obtain a correct association of operator
multiplication.

The right-hand side of (2.21) may also be written
in an integral form'® (see Appendix B), which shows
explicitly the nonlocal nature of the law of multipli-
cation:

A(p, ¢ X B(p, ¢
= ’%ff ol (=) (f—a)A(n, QB(p, ) dndr. (2.22)

It may be easily verified that this law of multiplica-
tion is associative (see Appendix C), i.e.,

AXBXC=(AXBXC, (22

but is not commutative. The commutator now
becomes

(1/7%)(AB — BA) = (1/ih)(A X B — B X A)
= [A, B]s = (1/1]&) {6—e#(a-/amaq.)
- e—“’(a’/ahap')}A(Pl. 0)B(D2, @2) |51 mpy=sp-

qr1™=qa=q

It may further be verified explicitly that the bracket
defined by (2.24) also satisfies the conditions of a
Lie bracket (see Appendix C). This is, of course, not
surprising since the ordinary commutator bracket
is a Lie bracket. One can further show by a similar
analysis, as in Appendix A, that if restriction is
made to a Lie bracket of the type

fu, o] = {f (ap,a;qz)

+ o555 o, i, 20

17 A, Messish, Quantum Mechanics (North-Holland Pub-
lishing Company, Amsterda.m, and John Wlley & Sons, Inc.,
New York, 1961), Vol. I,

18 Tt ig assumed here that the functions 4 and B and all
their derivatives aré zero for infinite values of their arguments,

(2.24)

(2.25)

PL™=Pa=py
qr=dg=¢q
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then the only admissible functional forms are
f@) = —g(@) = B/a)e™™ + 7,

where «, 8 and v are constants (¢ =
Poisson bracket).

Further it may be noted that in the limit £ — 0,
Eq. (2.21) or (2.22) reduces to

A XB=A-B, 2.27)

where the dot represents ordinary multiplication,
and the correspondence (2.24) reduces to the usual
Poisson bracket correspondence.

It is now clear that if the time dependence is
associated with the dynamical variables, (Heisenberg
picture) then the equation of motion for them can
be written as

9A®, ¢, /3t = [A, H]s. (2.28)

If the time dependence is associated with the
distribution function rather than with the dynamical
variables, then the equation of motion for the
distribution function is not given by (1.7) with [ &
replaced by [ ]s, but instead is given by

oFp, ¢ _ 1 {
al ih

X e‘*(a’/aham)H(ph QI)F(pZ’ Qa, t) Pr=pa=p*

d1=qs=¢

(2 .26)
0 giving the

ei#(a’/amaax) - ei*(ﬂ’/aﬂlaln)}

(2.29)

C. Condition for a Pure State

Instead of a pure state described by a wave-
function ¥(g), consider now a mixed state described
by a density matrix

0= g P ¥m( @ VA, (2.30)

(where ¢,, form a complete orthonormal set). The

quantum average or the expectation value of an
operator G(p, q) is now given by

(G) = Tr (66) = X pun | VA@GY-(0) dg. (231)

The corresponding distribution function is then
given by

X 5 pun | VE@C 7 Valg + he) dr
= ; mefu(P» Q)

Fs(p: Q)

(2.32)

The necessary and sufficient condition for a state
described by the density matrix ¢ (Eq. 2.30) to be
pure is given by

e = e (2.33)
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or equivalently, by the condition that the coefficients
pmx M08y be expressed in the form

Prn = PmPi- (2.34)

We ask for a similar condition on the distribution
function Fg(p, ¢) in order that it may describe
a pure state. It is shown below that the required
condition is

c.’*(a'/aman)FS(p“ ql)Fs(pzy q2)

P1=P2 ™D
d1=ds™=¢

= h7'Fs(p, q). (2.35)
In this connection one may also note that the
phase-space eigenfunctions (2.12) satisfy the re-
lations
ei*(o-/ap,aq.)f:”(pl, %)ff»'n'(l’z, QZ)\m-m-v

q1=qs™¢

= B Sy fon (D) Q). (2.36)

In order to show that (2.35) is necessary for
F¢(p, q) to describe a pure state, we write using
(2.32) and (2.34),

F,S(pr Q) = E pmptffm(pl !I) (237)
We then obtain
Gi*(a’/amah)FS(pl’ %)Fs(pz, Qz) D1=pa=Dp
= 2 2 PP o PR O (D, @), (2.38)

m,n m',n’

where use has been made of (2.36). Since Fs(p, ¢)
is normalized, we have

Z PmP: = 17
and (2.38) then gives
6;*(as/ap,aa.)Fs(p“ ql)FS(pZ» Q2) pimpamp = h"lFs(py q).

q1=qs=0C

To show that (2.35) is also sufficient, we write

Fs(p, Q) = ’; pmnf:m(p! 9)- (2'39)
Equation (2.35) then gives
E Z pmnpm'mffm’(p! Q) = Z pmnffm(pr Q)- (2'40)

m.n m m,n

However, since f5, are orthogonal, we obtain
Z P’ mPma = Pm'ny
m

a relation which is equivalent to (2.33). Hence
F4(p, q) describes a pure state.

We shall now consider corresponding results for
cases when the rule of association is not standard
ordering. Only the main steps will be indicated,
as the analysis is similar to that given in the present
section.
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III. NORMAL ORDERING

If we introduce two new independent variables*’

a = (¢ +ip)/@h}, ot = (¢ —ip)/@R}, (.1

then, as is well-known, the corresponding operators
a and a* may be interpreted as destruction and
creation operators, respectively, satisfying the
commutation relation

[a, a*]- = 1. (3.2)

In this section we shall discuss the case in which
the operator corresponding to a classical function
is obtained by replacing @ and a* by the correspond-
ing operators a and a* after they are put in a normal
order. By normal order is meant here, the order in
which all the creation operators occur on the left
of the destruction operators. Thus, if

G, ) = 2 gm(q(z_}oip >"<q(;)§p)»,
then
60,0 = T ol 5) (452). @9

This association is of particular interest in connee-
tion with field-theoretical calculations, where the
normal ordered products are usually employed. This
formulation, for example, has been found very useful
in investigations relating to the connection between
the semiclassical and quantum description of optical
coherence phenomena.®*® It may be noted that this
rule associates Hermitian operators with real class-
ical functions. Hence, we expect that the phase-
space distribution function will be real though not
necessarily positive-definite.

A. Distribution Function

The characteristic function of the distribution
funetion is given by

Mytr, & = [[ Futo, 0" dp dg
= [[ P, 0 e [i(g)*a*(e + ir)]
X exp I:i(g)ba(e - 'ir)] dp dg
= [ v@ e |[i(E)ar0 +n)

X exp [i(g)’a(o — ir)j|¢(q) dg. (34)

. 1 We use the asterisk to denote complex-conjugate quanti-
ties for ordinary functions and Hermitian adjoints for oper-
ators.

20 C, L. Mehta and E. Wolf (to be published).
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Simplifying Eq. (3.4) and taking the Fourier inverse,
we obtain

1 9* 3’
Fylp, ) = 5 XD [—%h(a—pa + 5?)]

X [ ¥4(q — tho)e e + ey dr. @)

It is easily seen that Fy(p, gq), given by (3.5),
is real as expected. An explicit form for a similar
distribution function, obtained from density matrix
in Fock representation, has also recently been given
by Sudarshan in a different connection.®

B. Dynamics
Following the methods given in Sec. IIB, we
now find the following law relating to multiplication:
62
8¢, 9,

4,9 % B0, ) = e {1

o Y . & )}
i — 1
+ op, 0D, + ¢, 0p: d¢. 0P,

XYA(Pn Q1)B(p2; 92)

(3.6)

P1=De=Dp*
q1=3ds=¢q

It is easily verified that this law of multiplication
is also associative and reduces to an ordinary
product in the limit A — 0. The commutator of
two functions now takes the form

(1/ik)A X B — B X A) = [4,Bly, @3.7)
where the bracket on the right-hand side is defined by

[A(P: Q)y B(P; q)]N = €éxp {g <aqlaaq2 + aplaapz)}

2 . h
Xﬁsma(

3 3 )
3¢, 9p:  9gs 3P,

X A(pl: 91)3(1’2; Q2),m-m-p- (38)

q1=g2=q

By analogy with the previous cases, we have the
association

(1/4h)[A, B]- = [A, Bly.

This correspondence shows that the normal bracket
defined by (3.8) is also a Lie Bracket.

The equation of motion, appropriate to the
Heisenberg picture now takes the form

04A(p, ¢, 1)/0t = [A, H]x.

On the other hand, the corresponding equation
of motion for the distribution function (Schrédinger
picture) is

(3.9)

(3.10)

Fy _ 2 {_71( & &
h 2 \dq, dq¢. = 9p, 9,

+i i)}smé< A _ A )
dp; ' og 2 \d¢. 9p, 98¢, ps
X FN(plx Q1)H(P2: q2) Pi=ps=p*

q1=da=¢

C. Condition for a Pure State

Again, following the methods given in Sec. IIC,
we obtain the condition which the distribution
function Fy(p, ¢) must satisfy in order that it
represents a pure state. This is found to be

o {3 (522 + 7m0
P72 \ag, ag;  3p; 9ps

XcosE< A - G )
2 \d¢q, Ip, 3¢, op,

X FN(pl’ QI)'FN(ph Q2) Drmpy=p h—lFN(P: q)' (312)

e1=as=4¢

(3.11)

Finally, we note that Eq. (3.6) may also be
written in an integral form,

Alp, 9 X Blp, 9) = }%ff R

X Alp — ir, ¢ + 7Bl + 0, ¢ — in) dr dy. (3.13)

Similar integral representations for the bracket
(3.8) and the condition for pure state (3.12) may
also be readily derived.

IV. RIVIER RULE

From considerations of the correspondence with
infinitesimal canonical transformations and in-
finitesimal unitary transformations, Rivier proposed
the following rule of association between classical
functions and quantum operators: If the function
G(p, ¢) is written as a Fourier integral

6@, 9 = [[ 1, 00 aras, @)
then the corresponding operator is given by
G, 9
= f f v(r, 031 + e * e e dr do. (4.2)

It may be easily seen that (4.2) may be written as

G, 9
= f f v(r, 03”6 + ™) drds,  (4.3)

which implies that this rule is simply & symmetrized
form of the standard ordering rule, ie., to the
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classical funetion p™¢" is associated the quantum
operator 3(p"q" + q"p").

It is clear that this rule associates real functions
with Hermitian operators, and hence the phase-space
distribution in this case must be expected to be real.
If we carry out similar calculations as in the previous
cases, we obtain the following expression for the
distribution function in the case of Rivier association:

Falp, @ = o [ are (9 (@9la + Hr)

+ ¥*(¢ — r)¥(9)}.

It should be noted that the distribution function
Fr(p, ¢) given by (4.4) is just the real part of
Fs(p, ¢) [cf. Eq. (2.5)].

The product law, dynamical brackets, and the
condition for pure state are more complicated and
hence are not given here.

(4.4)

V. RELATION BETWEEN VARIOUS PHASE-SPACE
DISTRIBUTION FUNCTIONS

In the previous sections we determined expressions
for the phase-space distribution functions appro-
priate to the different rules of association between
operators and classical functions, starting from a
given quantum mechanical wavefunction (in the
case of pure state) or density matrix (in case of
mixed state). The inverse of this problem is also
of interest. Given a phase-space distribution function
and the rule of association, to determine the density
matrix (or the wavefunction if the given distribution
function describes a pure state). This problem can
be solved by first expanding the distribution function
in terms of the phase-space eigenfunctions (appro-
priate to the given rule of association),

F(p; Q) = lz; alﬂjlm(p: Q); (5'1)

where the coeflicients a,,, obtained by using orthog-
onality relations between phase-space eigenfunctions
(2.13) are given by

am =1 [[ P, Oftto, D dpda. 2)

The density matrix is then simply given by
0= 2 Gin¥m(¥i()-

It is also of interest to examine how the distribu-
tion functions appropriate to different rules of
association are interrelated. Writing (1.7) in the
form [See Eq. (3.10) of the paper by Moyal’]

FW(I), q) — h—ie—;ih(a'/az:aa) { ¢*(q)¢(p)e-'w/'h} ,

5.3

(5.4)
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where ¢(p) is given by (2.9), we obtain the following
relation between the distribution function -cor-
responding to the case of Weyl’s association and
that corresponding to the case of standard ordering
[ef. Bq. (2.7)]:

Fs(p, q) = ¢/ Fy(p, g). (5.5)
Similarly, one obtains from Egs. (1.7) and (3.5)
the relation

e, 0 = oo {1 (&4 Do 0, 60

and from (4.4) and (5.4) the relation

FR(p, q) = Re FS(pr Q)
= cos [34(6%/3p 39))Fw(p, @),

where Re denotes the real part.

In particular, the relations (5.5)-(5.7) connect
polynomials of a given order in p and ¢ with poly-
nomials of the same order.

It is interesting to note that if a distribution
function is bivariate Gaussian in p and ¢ for the
Weyl’s association, it remains Gaussian for the
normal-ordering association also. Thus, for example,
if Fy is given by

Fy(p, ¢) = (&t/2r)
X exp {—3(ap” + a.¢” + 2a:p9)},

6.7

5.8)

where a,, a., a; are constants and A = a,a, — a3,
then

1 A 1A h
Fylp, @) = o A3 %P {—EF [<a1 -3 A)Zf)2

h
+ (aa -5 A)q’ + 2aqu]} , (5.9)
where
A = ATl — o, + @) + P4
VI. CONCLUDING REMARKS

(5.10)

We have seen that the nature of the phase-space
distribution function and the dynamics depends
much on the rule of association of operators with
classical functions. The distribution function may
not only be negative in some cases, but may even be-
come complex. If, however, the association between
the operators and classical functions is such that
Hermitian operators correspond to real functions,
then the distribution function is real. In most cases,
if one integrates over one of the variables, then one
obtains a positive-definite quantity. This is not
true for the case of normal ordering, discussed in
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Sec. II1. The fact that one is dealing with quantities
which are simultaneously unobservable seems to be
reflected in the nonpositivity of the distribution
function. From the expressions for these distribution
functions, one can, in fact, derive Heisenberg’s
uncertainty relation and even the Schrodinger
equation. Thus, we see that if negative and even
complex probability distributions are admitted, and
such descriptions are called ‘“‘semiclassical”’ as has
been suggested elsewhere in the discussion of related
problems,®'*® then such a semiclassical description
is completely equivalent to the quantum mechanical
description.

Throughout the preceding treatment, only the
case of one degree of freedom was considered.
However, our whole discussion can readily be
extended to the case of finite number of degrees
of freedom.
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APPENDIX A. CONDITION UNDER WHICH THE
BRACKET DEFINED BY

(o, 9,00, 01 = {55 ~ 5-5)

X u(pl) Q1)'U(p2, %)}m-p.-p

q1™Qa™=¢

BECOMES A LIE BRACKET

Let us start with the bracket defined by Eq.
(1.12) viz:

[, 9, v(p, 9)] = {f(aq,a;p, - aqza;pl)

X u(p,, 91)0(1’2y qz)}m-p--m

q1=as=q

(AD)

and ask for the form of the function f such that
this be a Lie bracket, i.e., which satisfies the follow-
ing three conditions:

(1) Linearity:

[u, aw + aw] = ai(u, v] + a.fu, w), (A2)
where a, and a, are constants;
(2) Antisymmetry:
[u7 1)]]= '—'[7), u]: (A3)

1 See, for example, Ref. 2, Appendixes 1 and 4.
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(3) Jacobi identity:
[u) [U, w]] + [v; [w; ul] + [w: [u: 1)]] = 0. (A4)

The condition (A2) is obviously satisfied by (A1)
for arbitrary f. For condition (A3) to be valid,
f(x) itself must be antisymmetric, i.e.,

fl@) = —f(—2).

To examine Jacobi identity, we write each u, v, w
as Fourier transforms:

(A5)

up, @) = f f ulky, 806”770 dk dsy, ete.  (A6)

We then have

o] = [ oo [ Gulhs, 0060, 8)f(ss — kas)

% gf Fatkalptilantene dk, ds, dk, d-?z’

and hence

[w’ [u, v:l] — f R f¢u¢v¢wei(h+k.+k.)p+i(c.+n.+a.)q

X f(kisz — kos)f{kes(s, + s2)
- 83(k1 + kz)} dkl dkg dka dsl d82 ds;- (A7)
Since the Jacobi identity has to be satisfied for

arbitrary u, v, and w, i.e., for arbitrary ¢., ¢,, and
¢, we must have

Z fleiss — kos)f(Rssy — 8aky+ ks sy — 8ak2)

oyelie
permutation

= 0. (A8)
Writing symbolically
z=FEXs (le,z = ks — ks, etc), (A9)
we obtain
> fa)fws — 2,) = 0. (A10)
ner:::lctll.ltoion
which gives, on using (A5),
2 fa — z)f(w) = 0. (A11)

Now, since f(z) is an odd function, we can write

f@) = 2 Ca™*.

n=0

(A12)

Then
f@, — z2)f(xs)

o 2m+1
_ 2m + D! (=1)
= 2, CuC. ;,1'!(2m+1-—1~)!ml

2m+l—r_r 2n+1
243

n,m=0
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© » 2m+1—-2r 2r 2n+1
{ 121 T2 X3

2, X CCem + DN\ Gm T = a1

n,m=0 r=0
B xgm—zrxgn lx§n+l } .
@r 4+ D! 2m — 2r)!

(A13)

The order of summation over r and m in (Al3)
can be interchanged by properly changing the
limits and we obtain

fa — @) = 30 3 @m + DIC.C,

n,rm0 m=r

% { xfm{-l zrxzrxznu _ xfm—zrx:r-idx:nd»l }
@en@em+1—20 @+ 1H!2m — 20!
(A14)

M, Eq. (Al4) can be

By substituting m — r =
written as

flz, — z)f(xs) = %‘, CoCos @M + 2r + 1)!

x { xf””xi'zﬁ"“ fo:L‘Z'H:I:g"H

ol M + 1)1 (@r + 1)L(2M)!}' (A15)

Thus, we obtain

® !
; f@y — z)f(zs) = . ;_ o CaClse %%—%S’L%——il_))—i

{ (x2m+l 2n+1 — i

2n+1, 2m+1
T3 )

+ x;r(xzmi-l fn+l x§n+lx';’m+l)

2n+1x;m+1) } X

2r 2m+1 2n+1
+ T3 — s

(Al6)

Since each of the three terms in the curly brackets
on the right-hand side of (A16) is of different
nature, condition (A11) gives

- @2m + 2r + D! 2
V2, Ol BT Em + 1)1 ©
X ( 2m+1 2n+1 — x2n+1 m+1) —_ 0
or
@m +2r+ 1! @n 4+ 2r + 1!
CnCm+r (2m + 1)' - CmaH‘ (2n + 1)!
(A17)
for all integral values of n, m, and r. Setting
C,=D,/2n + 1)}, (A18)
we obtain from (A17) the condition
Dan+r = DmDn+r (A-lg)

for all n, m, and r. It can be easily seen that the
only solution of (A19) is

D, = D", (A20)
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where @ is a constant (which can be equal to zero;
then D, = Dyd,,). Using Eqgs. (A12), (A18), and
(A20), we obtain

2n+l

f@) = (A21)

Z Dot 2n + 1)'

Puttinga = —a®and D, =
solution

B, we obtain the required

f(z) = Bl(sin az)/a], (A22)

given by the Eq. (1.14) of the text. The bracket
defined by (A1) now becomes

. & o

X u(py, ¢ )02, ) (A23)

One can further verify (by using the Fourier repre-
sentation) that any of the brackets which satisfy
relation (A24), (A25), or (A26) is a Lie bracket,

[, o], = &7y, o] (A29)
q1=qa=qy

[u, v]s = €% [u, 1] (A25)
Pi=pvs"=p)

[u, v]s = e‘v(«"/ﬂq:&m+6'/améaa)[u’ 1)] T (A26)
q1=ds=q

Here [u, v] on the right-hand side itself stands for
a bracket of the form (A23) or for any of the brackets
[u, 9]y, [w, v],, and [w, v],. Thus, if we substitute
(A23) in (A26), and set @ = vy = —18, we obtain
the “exponential”’ brackets

B {66(6'/30.393)

= _ ,0(8°/0as3py)
[u: v]a 0 e }

(A27)

Pr1=Ds=p

X u(p:, @2, ¢2)

defined by (2.24). Similarly from (A23), (A24), and
(A25), we obtain

2 3
[u, v]4 — E e'r(a /8¢19pa+32/3a49p1)
[+

9 & )
aql ap2 - aqz apl u(pl: ql)v(pz) Q2)
which is the bracket defined in (3.8).

x smn a( Pr1=Pa>D)
Q1 =Qa =g

APPENDIX B. PROOF OF THE EQUIVALENCE OF
RELATIONS (2.21) AND (2.22)

Starting with the integral form of the multiplica-
tion law (2.22)
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AXB
- %ff e""’”‘)""”)("")A(ﬂ, ¢)B(p, 7) dr dy, (B1)

and making a change of variables,'® we obtain

4xB=| [ &40 + #a, 9

X Blp, ¢ + IYy) dz dy
—2xizxy h"/zx" a"A gﬂ’ Q)

:,‘; ffe ' “al ap”

By o 3"B(p, q)
m! aq"

i

X 4 9D gy dy

3 R 3" A(p, g)
oy m!n! ap”

x LEB0 (L 2V gy

27 dy

- f;l(—ih il )

=l ap, 9q,

]

X Ay, ¢)B@:) ¢2) (B2)

P1™Ps=DP)
Q1™Qa"q

as given by (2.21).

APPENDIX C. PROOF OF THE ASSOCIATIVE LAW
OF MULTIPLICATION (EQ. 2.23)

From Eq. (2.22) we obtain
B(p, ¢ X C(p, 9)

— %ff e—(-‘/ir)(n—p)(r—a)B(m q)C(p, 1-) dr d‘n-

Hence

C. L. MEHTA

Ap, 9 X (B(p, 9) X Clp, 9))

= %f Ve de d+’ d?] dnle—(s'/*)(v—v)(r—q)A(n, q)

X e—(i/’k)(n’—p)(r’-f)B(nl’ »C(p, '), (C1)
whereas
(A(p, 9 X Blp, 9) X C(p, 9)
- %f de dr' dy dnle= /R o -0
X e—(i/fc)(n'-n) (r'—q)A(n;’ Q)B('fl, r’)C(p, T). (02)

If we interchange primed and unprimed variables
on the right-hand side of (C2) we obtain the expres-
sion given on the right-hand side of (C1). Hence

AXBXC=(AXB)XC. (C3)
We further have
AXB+CO)=AXB+AXC. Co

If the product law satisfies (C3) and (C4), then
the bracket defined by

(A,B]=AXB—-BXA (Cs5)

is automatically a Lie bracket. This proves explicitly
that the bracket [ ]s defined by Eq. (2.24) is also
a Lie bracket.

The corresponding product law in the case of
Weyl’s association,

A x B = e—%i#(a’/amaan—a’/aanap:)

X A(ply ‘I1)B(P2; q2) P1=pa=p)

d1=ds=q

(C6)

can also be shown to be associative. This furnishes
another proof that sine brackets are Lie brackets.
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It is known that a suitable collection of solutions of the free-field Maxwell’s equations is a Hilbert
space with respect to an appropriate norm, and that the inhomogeneous Lorentz group acts on this
Hilbert space in a unitary and irreducible manner. It is shown that this representation extends to a
unitary representation of the conformal group of Minkowski space. Similar results are obtained for

other mass-zero relativistic equations.

1. INTRODUCTION

T has been known for a long time that Maxwell’s
equations are invariant not only under the ten-
dimensional inhomogeneous Lorentz group but also
under the conformal group of Minkowski space.’
The conformal group is 2 fifteen-dimensional Lie
group which contains the inhomogeneous Lorentz
group and whose principal physical interpretations
are as follows: (1) it is the largest group of coordinate
transformations of Minkowski space which leave
invariant the speed of light, and (2) three of the
five extra dimensions correspond to transformations
to a coordinate system whose origin is moving with
uniform proper acceleration.”

In recent years the conformal invariance of other
mass-zero relativistic wave equations has been
established.®> The principal use made of this extra
invariance has been to establish conservation laws
for the wave equations.’'* Other attempts have
been made, however, to make the conformal group
play a more fundamental role in theoretical physics,
namely the role of a basic symmetry group for the
laws of physics, the role now enjoyed by the in-
homogeneous Lorentz group. Wigner® in 1939
pointed out that Lorentz invariance in quantum
theories is synonomous with unitary invariance
under the Lorentz group, i.e., he showed that
invariance of a quantum system under the Lorentz
group implies the existence of a unitary representa-
tion (up to a factor) of the Lorentz group on the
Hilbert-state space of the quantum system. His
argument moreover applies to any symmetry group

* This research was supported in part by National Science
Foundation grant No. 6240.

1 H. Bateman, Proc. London Math. Soc. 8, 223, 469
(1910); E. Cunningham, sbid. 77 (1910).

2 L. Page, Phys. Rev. 49, 254 (1936); H. T. Engstrom and
M. Zorn, tbid. 701 (1936), E. L. Hill, #bid. 67, 358 (1945);
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8 . P. Wigner, Ann. Math. 40, 149 (1939).

of the quantum system. In 1948 Bargmann and
Wigner® established a one-to-one correspondence
between certain relativistic wave equations and
equivalence classes of irreducible unitary rep-
resentations (up to a factor) of the inhomogeneous
Lorentz group. In this correspondence the Lorentz
group acts on a Hilbert space consisting of solutions
of the given wave equation. Taking the group
representation as the more fundamental of the
two sides of this correspondence, Segal” showed how
one might begin to construct a theory of elementary
particles with the conformal group as the basic
invariance group. He showed that one could expect
the conformal group to lead to a discrete mass
spectrum and possibly a fundamental length, while
at the same time the conformal group approximates
the inhomogeneous Lorentz group for small values
of the fundamental length in the same sense that
the Lorentz group approximates the Galilean group
for large values of the light velocity. In order to
carry forward this theory it is necessary to determine
the irreducible unitary representations of the con-
formal group and to determine which ones correspond
to which particles. The first point has been in-
vestigated by Murai® with applications to physics
in mind, and also by Graev,’ apparently incidental
to his investigations of representations of real simple
Lie groups. One might expect that a unitary rep-
resentation of the conformal group corresponding
to the photon arises from Maxwell’s equations in
the same way that a unitary representation of the
Lorentz group does, i.e., that one could extend the
Maxwell representation of the Lorentz group to a
unitary representation of the conformal group. No
matter what theory the conformal group might be

¢ V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci.
U. 8. 34, 211 (1949).

7 1. E. Segal, Duke Math. J. 18, 221 (1951).

8Y. Murai, Progr. Theoret. Phys. (Kyoto) 9, 147 (1953);
thid. 11, 441 (1954).

8 M. I. Graev, Dokl. Akad. Nauk SSSR 908, 517 (1954).
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utilized in, its relevance to a quantum mechanical
theory would be severely limited if this extension
were not possible. In this paper we show that this
representation of the inhomogeneous Lorentz group
does in fact extend to a unitary representation of
the conformal group, and that the same is true
of the other mass-zero, discrete spin representations
of the Lorentz group.

2. THE PHOTON SPACE

We denote by C the double-napped cone in
energy-momentum space consisting of those points
k = (ky, ks, ks, ko) which satisfy k> = 0 and k = 0.
We shall use the metric with signature 444 —.
We denote by C™ the subset of ¢ for which k, > 0.
If k is the above four-vector, then k will denote
the three-vector (k,, k;, ks). Consider 3-dimensional
vector-valued functions e(k), A(k) with complex
components defined on € for which k-e(k) = 0
and h(k) = k xe(k)/k, for each k in C. Since k, = [k|
on C*, C” can be identified with 3-dimensional space
with the origin excluded. This identification is often
made and we shall sometimes use it. It is well-known
that the volume element dk,dk.dks/|ko] on C is
Lorentz-invariant. The photon space is the space 3¢
of pairs of functions e(k), h(k) on C satisfying the
above restrictions, and for which

[le, h|]*

e(k)-e(k)* + h(k) - h(k)* dk, dk, dks
-1, g Wl < W

A star denotes complex conjugate.

Associated with an element of 3¢ is a solution
E, H of Maxwell’s equations in free space, defined
as follows:

3
B = [ et Tk,
C lkol (2)
vkex ﬁ_.

[k
More precisely, these expressions define differenti-
able solutions of Maxwell’s equations if e(k) and
(consequently) h(k) vanish fast enough for large |%]|.
For an arbitrary element of 3¢ these expressions
define generalized functions on space—time which
are generalized solutions of Maxwell’s equations.
We shall elaborate on this point later. For each
k, h(k) is determined by e(k), and since e(k) is
orthogonal to k, e(k) has two (complex) degrees
of freedom which as is well-known corresponds to
the existence of two independent states of polariza-
tion of a plane wave.

H) = f h(ke

LEONARD GROSS

In order to establish the Lorentz invariance of
Eq. (1) we consider momentarily the 4-potential.
Let a(k) = [a.(k), a:(k), as(k), ao(k)] = [a(k), ao(k)]
be a complex 4-vector function on C satisfying
k-a(k) = 0 for each k in C. Then the function
e(k) = tkoa(k) — tkay(k) satisfies k-e(k) = O.
Hence e¢(k) and the function A(k) = k xe(k)/ko
satisfy the correct algebraic condition to be in 3C.
Furthermore, 0 < e(k)-e(k)* = kla-a*. Thus

e(k) -e(k)* + h(k)-h(k)* d’k *dak
J, R mi=2 e @

Hence if a is such that the right-hand side of Eq.
(3) is finite, then the pair e, & will be in 3. For
every e, h in 3, there is at least one function a(k)
related to e, A as above, namely, a = (a, 0) where
a(k) = e(k)/k,. The right side of Eq. (3), although
always nonnegative, is not positive-definite on the
considered class of functions a(k). It is zero if and
only if a(k) has the form a(k) = kf(k) almost
everywhere on C where f is an arbitrary (measurable)
complex-valued function on C. It follows that
e = h = 0 almost everywhere if and only if a(k)
hag this form.
The 4-potential A (z) defined by

&
|Kol

is readily verified to be a 4-potential for the fields
defined in Eq. (2). Consequently, an inhomogeneous
Lorentz transformation £ — L{z + b), where b is
a four-vector and L is a homogeneous Lorentz
transformation, acts on the fields E and H by
transforming A(z) into A’(z) = LAL 'z + b).
This transformation of A is obtained by trans-
forming a(k) into **** La(L™"k) (utilizing the Lorentz
invariance of d°k/|ko|). Consequently, the natural
action of the inhomogeneous Lorentz group on 3¢
is unitary in view of the invariance of the right
side of Eq. (3) under the transformation a — a’(k) =
¢**La(L7'k).

We have been somewhat sketchy here since the
above facts are known. In order to establish that
the conformal group acts in a unitary manner on
H, it will be necessary to deseribe the norm (1)
directly in terms of E and H. For this purpose
we let £ = (k, —k,). Then from Eq. (2) we have

Alx) = fc a(k)e™

E'(x, 0) = L+g_(_,§)_;c|:)@eik-x dsk,

H(x, 0) = j;+ M{)ﬂ)e;k.x &
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Since

hk)-h(f) = k xe(k) k xe(k)

Tk
= —e(k) -e(k),
the expression in Eq. (1) ean be written

f le®) + e(®)[® + [h(k) + KB &% @)
c+ ko ko

Let f(k) = [e(k, ko) + e(k, —ko)l/ko where ko = ‘k'
We write henceforth E{x) in place of E(x, 0). Then

B = [ e &%, )

and
1) = @n)* [ B@e ™= d.

The electric field contribution to (4) is

[ oo £

We denote by 3¢’ the dense submanifold of 3C
consisting of those pairs e, A which are bounded
and for which E(x) and H(x) are bounded functions
integrable over all space. Then in view of the
equality

f o P (tk-2) k| d*k = 4x(1 — cos |z| R)/|z[",
1kl<R

we have for e, h in 3¢’

H0)-10)* o
[
d*k

(2«)“ f &l ff TR ER)-EG)* d's dy

Ex)-E(y)*
(27r)° }z-m L. n x—3/

X (1 — cos |x — y| B) d°z d’y.
Now

E(x)-E@)* 3. 3
cos |x — y|Rdzd
L R ylz l YI Yy
. : 4
f f Ey + z)-EG)? 2)2 Eg) cos |z| R &’z d*y.
R-mn £, JE, |z

Since E(y -+ z)-E(y)*/|z|® is an integrable function
of y and 2, the one-dimensional Riemann—Lebesgue
lemma applied to the function of |z|, obtained
by integrating E(y + z)-E(y)*/|z|* with respect
to y and the two angular spherical qoordinates of
z, shows that the last-indicated limit is zero.

R—-w
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A similar argument applied to H shows that
for ¢, h in 3¢’ the expression (1) can be written

2 4w
18, B P = 2
x [ [ BRI A EDACE oy )

3. CONFORMAL INVARIANCE OF PHOTON NORM

The conformal group is generated by the in-
homogeneous Lorentz group and two other types
of transformations, namely, uniform dilations z—ax
a > 0 and inversion in the unit hyperboloid z — z/2°.
The manner in which the electric and magnetie
fields transform is determined by putting these
together to form a skew-symmetric tensor in a
well-known way, The skew-symmetric tensor is
then transformed as a bivector (also known as a
two-form) is normally transformed. Under the
dilation z — az the result is £ — E'(z) = a *E(a""z)
and H — H'(z) = a *H(a™"z). It follows immediately
from Eq. (6) that ||E, H||* = ||E', H'|" when
E, H is in the dense set 3¢'. Moreover, from Eq. (2)
we see that e — &' (k) = e(ak) and b — K'(k) = h{ak)
for all pairs ¢, & in 3¢, and from Eq. (1) it follows
that uniform dilations are unitary.

We now turn to the main result of this paper
which is to show that 3C is transformed unitarily
under the inversion z — z/2°. The effect of the
inversion Tz = z/z” on E and H can be computed
directly by transforming the corresponding 2-form
(bivector). The result for the plane ¢ = 0 is*°

E'(x) = l%le(T“x) - Tzili“ [x-E(T'5)],
@
H(x) = *T%l‘ HT'x) + %x-fl( -1y,

We remark that in the ¢ = 0 plane the inversion
T is inversion in the unit sphere. Let 3C, be the
dense submanifold of 3¢ consisting of those pairs
e, h in 3¢ which are zero outside of a bounded set
in ¢ and also in a neighborhood of the vertex,
and are at least six times continuously differentiable.
If ¢, h is a pair in 3¢, we shall usually refer to the
corresponding pair £, H also as being in 3¢,. We
note that 3¢, ( 3¢’. Moreover it is important to
note that if B, H is in 3¢, then E’, H’ given by
Eq. (7) is in 3¢/, In order to see this we observe
that E(x) and H(x) go to zero at « at least as

fast as 1/r® and are bounded. Consequently, by

1¢ E, Cunningham, footnote 1, p. 80,
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Eq. (7), E' and H' are bounded (and go to zero
at x = 0) and are O(r*) at «. Hence E’, H' are
both integrable over all space. Using Eq. (5) to
define a function f’(k) [and similarly g’(k) for H'],
and using the fact that E’(x) and H’(x) are known
to satisfy Maxwell’s equations, it follows that the
equations k-e'(k)=k-¢'(£)=0,¢'(k)+¢' (k) =k (k,)
and kx[¢'(k) — € (£)] = k2¢’(k) can be solved for
¢—and in view of the derivation of Eq. (6), ¢’, &’

{ix|* EGx) — 2x[x- E(X)]} {IY|2E(Y) - 2yLv E@IH*

LEONARD GROSS

is in 3¢’. Consequently inversion carries 3¢, into 3¢’

We consider now an element E, H of 3¢,. We may
use the form of Eq. (6) for the norm of E, H and
also to compute the norm of Z’, H'.

The Jacobian of the inversion x — x/|x|®
readily computed to be 1//x|°. Substituting E’ and
H’ as given by Eq. (7) into the expression of Eq.
(6) and making the change of variables x — Tx,
y — Ty, we obtain

) gy = [[ ety

Now the triangle spanned by 0, X, and y is
congruent to the triangle spanned by 0, y [x|/[yl,
and x|y|/|x|. Hence

ly — x|

] Iyl — | x|} =

Iy
Substituting this into Eq. (8) and writing £ for

Ix

&l* 51" |5 31—

-+ similar H terms| -

®

Iyl lxl

the unit vector in the direction of x we get

(27")6 I 1L 3, 1 E(x) E(Y)*
&, 2\ = [[ @ dy o

+ B + similar H terms,

where

B = f e f &y 4¢-9l2-E@)1[g-EQI* — 2[9-E®)][9-E@]* — 2[£-E)]*£-E®@)]

It suffices to show that B = 0. The first term in
B doesn’t change upon interchanging x and y, while
the third term becomes the conjugate of the second.
Hence

B=4Refd3xfd3y

(5e 9E£-E@)g-E(y)* —
£ — yI*

- s, @-EG)*
—4Refdy |

x [ a0y EDEED — 3 B@)
x -yl

9-E@)g-E@)*

©)

ow
fd3 @-y)t-B)
k=3
- f iy &Y — DE-E® + [z-ER)]
lx —y|

f PN x)£-E(x) -II- x —Iy E@)] +y-EX)
x—y

Denote by S.(y) the sphere of radius r centered

lx — y|*

at y, by B.(y) the solid ball, and by # the outward-
drawn unit normal. Then

f j:?r(y) = E(X) dA

=f dr V-Ex) d*z =0
o T Jp,»

fda x I_ Z) I[J;(x
y

Hence
f &z (£-y)2-E(x) —zy-E(X)
lx — ¥
2, Xy — )[E-E®]
=[BT w
On the other hand,
fds (x-y — 3)[£-EX®)]
lx — yi* |x]
- f @y &= Y = DEE@)
[~ yI* |x|
Gy — [£-EE)] _ s, £-E(x)
e = e TR
Gy — 0¢-Ex)

+ [a=E

—y|” x|
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The first term on the right is
| dﬁf nBid=[ L[ v.E#z=0.
o T Js. o T Je.(o»

Hence

[ @

(x-y)¢- E(X) — y-E®)
x -yl
- [ o xSl E)
—yl* x|
From Egs. (9) and (11) we get, interchanging x
and y in the second line,

B = 4Re [ @y [ @ LEGLIEEEGy - %

(11)

XTIyl x — yI°
o [ o [E-E@IM-E@)Ex — y)

- are [ o [y BRI
3 s, [ E@J-E@*x-x — y)

= 4Re [ @ [ @y vl il [ — y°

Upon substituting Eq. (10) into Eq. (9), however,
we get exactly the negative of this. Hence B =

We have shown that inversion is norm-preserving
when applied to elements of 3C,. Since 3¢, is dense
in 3¢, it follows that there exists a unique continuous
extension U of T from JC, to 3¢ and that this exten-
sion preserves the norm. We must show that U
actually agrees with T on the elements of 3C outside
3¢, and that U? = I. However T has not been
defined yet on some of the elements outside 3C,
since these are not functions on space-time, but
generalized funetions. In order to define T on these
elements in the natural way appropriate for general-
ized functions, we let ¢ stand for a test 2-form
(bivector), i.e., ¢ is an infinitely differentiable 2-form
on Minkowski space with bounded support set.
If F is the 2-form constructed from E and H given
by Eq. (2) where e, k are in 3C,, we shall imply, say, F
is in 3C,. The generalized function corresponding to
F is the functional of ¢ given by [z. F(z)-¢(x) d*z
where the dot denotes the Lorentz-invariant bi-
linear form F,,(z)¢" ().

Now if TF denotes the transformed solution of
Maxwell’s equations under inversion 7', then (see
discussion in Sec. 4) (TF) is given by

(TF)x) = (1/2L, A L.F(Tx),

where L, is a Lorentz transformation and L, A L,
is the linear transformation' on bivectors cor-
responding to L,.

From Eq. (23) it follows that Ly, = L,. Thus,

u Jf Lz = (a“,), then (Lz A LZF)‘" = aucaanr°
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since absolute value of Jacobian T = 1/z°,

f TF@)-6(c) d'z = f x%L, A LF(T7)-6(z) d'z

= [ F@o) L. A Lo L a

f F@)-L. A Lé(To)s* d’”
Thus

[ @40 ¢ = [ F@)- @9 dv.

We shall use Eq. (12) to define the generalized
function TF when F is an arbitrary element of H,
and shall show that T then agrees with U. Since
T? = I it will then follow that U? = I and that
U is consequently unitary.

In order to see to what extent the right side
of Eq. (12) makes sense as a generalized function
for an arbitrary element F of H, we observe first
that [ F(z) -¢(z) d'z corresponds formally to

vy Ok
L. [ wwswd,
c+ E.

d’;w(k) =L eik-z¢uv(x) d41?.

The expression in Eq. (13) is of course the definition
of [ F(z)-¢(z) d*r when F is not a function. That
this is a continuous linear functional of ¢ follows
from the easy-to-establish facts that the components
fur(k) are in L*(C, d’k/|ko|®) and so are kZp*(k),
while convergence of a sequence ¢2’(z) in the usual
sense for test functions implies convergence of
kigw (k) in L*(C, d’k/|k,|*). At the same time we
see that [ F(z)-¢(x) d*z is a continuous function
of F in the 3¢ norm for fixed ¢.

Now if ¢ is a test form, then T¢ will have its
components in L*(E,) but not necessarily in LY(E)),
and this leads to some technical difficulties in
interpreting [ F(z)- (T¢)(z) d*z for arbitrary F in 1.
We consider therefore the set D, of test 2-forms ¢
whose support set is disjoint from the light cone

= 0. For such a test form ¢, one readily verifies
that T¢ is again in D,. One must define To to be
zero on the light cone to make T¢ continuous.
Thus for an arbitrary F in 3¢ and ¢ in D, the expres-
sion [ F(z)-T¢(x) d’z makes sense by defining it
as in Eq. (13) with ¢ replaced by T¢. What we
shall prove is that there exists a unique element
F’ in 3¢ such that for all ¢ in D, we have

f F'(@)-6(z) d'z = f F@)-To() d'e.

(12)

(13)
where

(14)
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For the existence let F/ = UF and let F, be a
sequence of elements in 3, converging in I to F.
Then UF, converges to F’ in 3. The following
steps are justified by the above mentioned continuity
in F:

[ F@)-Tota) 'z = f lim F,-T¢ d'z

= lim [ F.-To d'
= lim [ TF, ¢ d'
- f lim TF,-¢ d'z

= f F'-¢ d‘x.

The linear functionals on 3¢ determined as in Eq. (13)
by the Fourier transforms of elements of D, are
dense in 3C since the components of forms in D,
are dense in L'(E,). Consequently F’ is unique. Thus

fUF-¢d* - fF-qud“x

for ¢ Im D, and F in 3C. (15)

In view of Eq. (12) the natural definition of TF
for an arbitrary F in 3¢ is that it is the F’ appearing
in Eq. (14). With this definition we then have
obviously TF = UF for all F in 3C. Since

[vrsaz= [vrToas
- fF-T’qb d's = [ Fgd,

we have U? = I. Hence the range of U is all of 3¢
and U is unitary.

4. OTHER SPINS

We utilize the description by Bargmann and
Wigner® of the wavefunctions for particles of mass
zero and spin 8 = IN, N = 1, 2, ... except for
change in signature. Thus if S denotes four-dimen-
sional complex spin space with positive-definite
inner product (,), we denote by 8" and 8§~ the
two 2-dimensional eigenspaces of vy, We let Ky
denote the direct sum of the space of symmetric N
tensors over S8* with the space of symmetric N
tensors over S”. Thus

Ky = S+®. .t ®t St + S-®c e & 8.
We denote by +o, Vi, Y2, vy: the Dirac matrices

acting on § satisfying v.v, + 77« = 204 Yo is
assumed skew-Hermitian and the other three

LEONARD GROSS

Hermitian. Denote by P‘” the operator

PU) - 1® eos ®7“(a/8x")® v ®17

where the nonidentity factor is in the jth position.
This operator acts on functions on space-time with
valuesin S Q) «-- ® 8 (N factors).

The Dirac wavefunctions then for spin s and
mass zero are functions Y on space—time with values
in Ky satisfying

PP%@) =0, j=1,---N. (16)

Actually any one of these N equations imply all
the others because of the symmetry of ¥(z).

The Hilbert space 3¢y associated with spin s = 3N
may be described most easily in momentum space.
An element in 3Cy is 8 function ¢(k) defined on the
light cone C with values in K satisfying

k(i)¢(k) =0, =1, N: (17)

where

E =1 - RXvER - R®1,

and the nonidentity factor is in the jth position.
The normalization condition is

. &k
el = [ 02, 600

The wavefunction ¢(z) is related to ¢(k) by

va) = [ ome %

i
¢ is a generalized function satisfying Eq. (16).
The space 3¢, is the photon space described diff-
ferently in Sec. 2. The equivalence of the two
deseriptions proceeds from the fact that there is
an isomorphism between K, and the bivectors over
complex Minkowski space which establishes an
equivalence between the natural representations of
the homogeneous Lorentz group in these two spaces.
The isomorphism also carries the inner produet
in K, into the inner produet on bivectors used
in (1) and carries the Dirac equations (16) into
Maxwell’s equations.'®
The norm (18) expressed in terms of ¢ is

1P = e [

X f f (¥(=), xb(y))*’i“!;’——'_;jll‘d% dy. (20

# C. C. Chevalley in The Algebraic Theory of Spinors
(Columbia University Press, New York, 1954), pp. §9-96;
E. M, Corson, Introduction to Tensors, Spinors, and Relativ-
istic Wave Equations (Hafner Publishing Company, New
York, 1953).

< », (18)

(19)
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To derive this, one uses the fact'® that Eq. (17)
implies that ¢ (k, k,) is always orthogonal to ¢ (k, —k,).
However, this expression for the norm will not be
very useful. In the spin-} case, Eqs. (18) and (19),
the orthogonality of ¢(k, k,) and ¢(k, —k,), and
the Plancheral formula show that

[1¢* = @m)™

x [ W0, v, 0) s, s=3 @D

Under a dilation z — az, @ > 0, the spin-s wave-
function ¢ transforms into ¢'(z) = a * '¥(a 'z).
This is easily verified to be unitary with respect
to the norm (18) or (20), and ¢’ clearly satisfies
(16) when ¢ does.

We consider now how ¢ transforms under the
inversion Tx = z/x°. The general form to be
expected is /() = Ay(T 'z), where A is a linear
transformation on the space of values of ¢. If ¢
were a tensor field instead of a spinor field, A would
simply be the differential dT, at z applied in a
standard manner to tensors. The differential d7T', is
the linear transformation on Minkowski space given
by the Jacobian matrix, or more directly,

t
@T)y = ﬂ(xzt-l_—y_) "

(22)

In the present case, however, ¥ is a spinor field
so that 4 ought to be a spin transformation (depend-
ing on z) corresponding to d7'.. However d7T', is not
a Lorentz transformation, but rather a scalar
multiple of a Lorentz transformation.'* Specifically,
Eq. (22) applied to the inversion T yields

y — 2a(y-2)/z’
xz ’

@T.)y = 2 # 0. 23)
The numerator is a reflection in the hyperplane
Lorentz orthogonal to x, and hence is a Lorentz
transformation. We denote it by —L.. Now the
spin transformations on S corresponding to L, are
the scalar multiples of >_°_, z,4*. It is to be expected

therefore that A should have the form'®
A=CDryR - Rasy® (N factors)

for spin s = 1N where Cy(z) is a scalar.

In fact, for the case N = 2 (photon), the isomor-
phism between K, and complex bivectors mentioned
above can be used to establish that the known

1 Setting u = ¢1(k) and v = ¢o(£), we have ko(u, v) =
(vokoy®u, v) = —(vort, kov) = —(vou, k-yv) = (vok vy, v) =
—(7oko'x°uz v) = —ko(u, v).

4 This is the case for any conformal transformation since
by definition they preserve angles in the Lorentz metric.

1 Summation convention is in force in this paper.

24
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transformation [Eq. (7)] of the electromagnetic field
under inversion agrees with Eq. (24) if C,(z) = z™°
On this basis then it is reasonable to seek an A
of the form (24) with Cy(z) a power of z’. A more
or less straightforward computation shows that
there is only one power of z*> which allows the
transformed wavefunction to satisfy the wave equa-
tions (16). The result is as follows. Let z stand for

®.0 z"y, when z operates on a spinor. Then

(since T = T77),
V) = 282D B2 gy

2N+2
z

(25)

It is straightforward to verify that ¢’(z) does
indeed satisfy Eq. (16) except that one needs the
fact that

Q@ RIOYRI®  @1®
®1Q @1

acting on elements of Ky is zero. In order to prove
this, it suffices to prove it for K,, i.e.,, to prove
that ¢ = 4* X v, carries elements of K, into zero.
Forthen ¥ ® 7. ® 1 & :-- @ 1 is zero on Ky
and this operator goes into the desired one upon
permuting the factors in Ky. Now in view of the
isomorphism between K, and bivectors, the operator
C acting on K, can be determined by computing
how it acts on bivectors. The isomorphism carries
C into the operator v — »_,e*ve, where e, is a basis
of Minkowski space corresponding to v,, v is a
bivector and the product is Clifford multiplication.
Taking » = z A y with z, y 4-vectors, it is simple
to compute explicitly that >, e"ve, = 0. Another
proof consists in using the representation

Y = ’ Yo =
o; O -I 0

for the Dirac matrices, where

o = to 1] s etc-
10

Since Y., v* ® v, is Hermitian it suffices to show
that the trace of (O, v* ® #.)* with respect to
the subspace K is zero. The trace can be computed
explicitly using this representation. One has
(Eu 7" ® 'Yp)z =4I + Zuv‘v vy’ ® YoV The trace
on K, of v"v" & v,v, (no sum) is —2 trace on
S*®, 8" of 6; ® 0; = —2 in all cases. Since K,
is six-dimensional trace, C* = 0.

In the spin-i case, the unitarity of the trans-
formation ¢ — ¢/ given in Eq. (25) is easy to
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demonstrate. The Hilbert space is the space of
spinor-valued functions satisfying Eq. (16) (general-
ized solution), and for which the norm (21) is
finite. Substituting ¥’ into Eq. (21) we get

13__l_

[ (o 2) i vl 50)
= Gor | g T, W) d,

where we have used the fact that x = > °_, z,v'
is Hermitian and x* = [x|>. Now a transformation
of coordinates x — Tx = x/|x|* shows [|¢'||* = ||¥|*
since the Jacobian of 7 in space is 1/)x|°. Thus
T is unitary in the spin-% case.

The spin-1 case has already been treated in Sec. 3.
For higher spins it becomes algebraically very
complicated to prove that Eq. (25) defines a unitary
transformation. We shall prove instead something
weaker, and in fact we shall be somewhat informal
in our proofs. Let 7', denote translation by a: T,z =
Z -+ a, where a is an arbitrary element in Minkowski
space. Let T denote inversion as before. The trans-
formations T'T,T form a four-dimensional subgroup
of the conformal group. We shall show that the
infinitesimal generators of this subgroup are formally
skew-adjoint. Since all the other eleven generators
are already known to be (actually) skew-adjoint,
we shall have an informal proof of unitarity. Transla-
tion acts on ¢ by just translating the argument.
Thus (TH)(x) = ¢(T:'z) = ¢(x — a). The in-
finitesimal generator D, of the one parameter group
TT,T may be computed as follows:

(TT.TY)(x) = @ﬁs@ TT¥)T2)
- 2002 ryyrars)
_I® - Qe z _
- 222 (T‘l/)(:ﬁ ta)
20 Q=
x2N+2
% (/2 — ) ® -+ ® (/2 — ta)
(x/x” —- ta)2N+2
z — fax’
X ‘P(l 2wz + tﬂ;%’)'
Hence
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(DY@ = % T TH@)iwo

[~ ®IQ - @1+ - +1
® - R1Qza) + 2N + 2)(a-x)
— 2%a-V + 2(a-2)(x- V)ly(x).

Now we Fourier-transform D, using Eq. (19).
It is more convenient to determine its action on
x(k) = @®&) + ¢(k))/[ko| where & = (&, —ko).
First we consider the case where a is a space vector
e = (a, 0). Consider formula (26) in the plane
2o = 0. The right side of Eq. (26) then does not
involve any multiplication by z, or differentiation
with respect to x,. Furthermore, from Eq. (19),

(26)

v = [ e &h.

Hence, letting

1< d
_—_Zz,y"——

vk and A = —V?,
n=1

we have

D.y(x) = fE e PE[(Va®@ 1V -

+ 1" ® Va — @N + 2)a-V

+ tAa-k + 2i(a- V)V kix(k). @7

A differentiation operator is to be understood here
as differentiating all functions of k that appear
to its right. As usual an operator on spinors involving
a vector such as a means Y ., a;v', whileV - kx (k) =
7t ) 3.1 0(k;x)/0k;. The integrations by parts used
to obtain Eq. (27) are legal if x (k) has two continuous
derivatives and, say, vanishes outside of a bounded
set. We shall assume this and also that x vanishes
in a neighborhood of 0. The functions ¢ for which
x has these properties form a dense set 9 in 3Cy
and we show that D, is formally aniisymmetric on
this domain.

Since' ¢(k) and ¢(£) are orthogonal elements
of Ky, the norm of Eq. (18) can be written

[k
= k), x(K)), 28
Il = [ o 6,20, @9
and correspondingly, the inner product is
- [ ¢k
608 = [, e 6B, @)

We wish to show that (D.¢,, ¢2) = —(¢:, Dud2),
or more explicitly, denoting the operator in square
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brackets in Eq. (27) by 4, we want
d’k
[ ¥

(AX1(k): Xz(k»

= [ 5 060, 4.

Proving this is largely a matter of integration
by parts which is straightforward though lengthy,
and we omit most of it. After applying only integra-
tion by parts (dropping all boundary terms), we
obtain without using the wave equation or the
special nature of the space Ky

f &’k
Es lkIN—l

--f £ kN_ Ca®), Axs(E)

(4x:(&), xa(k))

+@ =1 [ 6ul), Wak - (k@1

+ - + 1" @ abbe®) ——n (30)

Ik|N+1 ’
where 1" " means 1 ® --- ® 1 (N — 1 factors).
In order to show that D, is formally antisymmetric,
it is necessary and sufficient to show that the last
integral in Eq. (30) is zero.

Since x; and x. are symmetric, the integral can
also be written

NN -1

X [ 6a®), lak — ak @ 1" — i 1k1"“
For N = 1, this is zero. For N > 2, it will be zero
for all x,, x; if and only if the integrand is zero,
since the wave equations impose only pointwise
conditions on the x’s ie., a multiple of x by an
arbitrary smooth complex-valued funection is again
a x. But for N = 2 (photon), we have already
seen that inversion is unitary. Hence so is T7,T
unitary for this case, and D, is therefore anti-
symmetric in case N = 2. Thus
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{x:(k), [a-k — ak @ 1]x.(k)} = 0

when x; and x; come from photon wavefunctions.
Now a general spin-s, (s > 1) wavefunction ¢,
can be written as a sum of products ¢,(k)
> ¢i(k) & v;, where ¢/ is a photon wavefunction
and »; is in Ky_,. To see this we need only take
the »; to be an orthonormal basis of Ky_,. The
representation exists since K, is contained in
K, ® Ky... The ¢, are photon wavefunctions
since 0 = & ® 17 7"¢,(k) = 2 [(k @ Do} (k)] @ v;
and the v; are linearly independent. Thus if

x:(k) = ZX;i)(k) ®vi’ 1=1,2,
then
), [a-k — ak @ 17 Ix,(k))
= 2 (&), [a'k — ak @ 1]x{" &) = 0.

Hence D, is symmetric on the domain 9 we have
described. In order to show that D, is antisymmetric
on M for vectors @ other than those with time-
component zero, we need only observe that if L
is a homogeneous Lorentz transformation and U(L)
is the unitary transformation associated with L
in the (already known to be) unitary representation
of the Lorentz group on 3y, then U(L) leaves M
invariant and moreover U(L)D,U(L)™ = D_,. The
last equation follows from the fact that inversion
T commutes with any homogeneous Lorentz trans-
formation, for then

LTT,TL™ = TLT,L7'T = TT..T.
Thus
UL)DUL)'y = (d/d)UL)TT:.TUL) " ¥|i-0
= (d/d)TT:1.T¥liwo = Ds.

when ¢ is in 9. Hence D,, is skew-symmetric
when D, is, and then so is D;,_, since this equals
D, — D,. Since every 4-vector has the form La — aq,
where a has zero time component and L is an
orthochronous homogeneous Lorentz transformation,
it follows that D, is skew-symmetric for all 4-vectorsa.
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Ten new extensive quantities that appear to be independent of stress—energy, but that analogously
characterize the physical state of an electromagnetic field, are exhibited and are shown to be con-
served in vacuum because of Maxwell’s equations. These new quantities are shown to be capable of
retrograde flow in a circularly polarized plane-wave field.

1. INTRODUCTION

N a general study of time-periodic electromagnetic

fields in vacuum, it was noticed that the real
vector field [1/8(E* xE + H* xH)], which has the
mathematical form of a time-averaged quantity, is
solenoidal because of Maxwell’s equations. This
vector field was therefore recognized to be capable
of representing the time-averaged flux of a conserved
physical quantity. Simple considerations reveal that
the more general expression for the instantaneous
flux of this conserved quantity in a nonperiodic
field is (Ex90E/0T -+ H x0H/dT), and that the
spatial density of the conserved quantity is identifi-
able as [E- (curl E) + H-(curl H)]. In other words,
for an arbitrary electromagnetic field in vacuum,
Maxwell’'s equations were found to guarantee the
validity of the differential conservation law,

. oE dH
div |:E X T + Hx—a—f]

+ % [E-(curl E) + H-(curl H)] = 0. (D)

Curiosity concerning the significance of this
unusual conservation law stimulated a successful
attempt to express it in homogeneous tensor nota-
tion, and led to the discovery that it involved a
tensor of valence three. The tensorial form of Eq. (1)
was then found to express nine additional conserva-
tion laws, akin to Eq. (1), and of equally unfamiliar
form. This unexpected discovery of a complete set
of ten new conservation equations is a source of
mathematical embarras de richesses because of the
lack of any ready physical interpretation for the
quantities that are found to be conserved. Never-
theless, the existence of an extensive formal super-
structure of new conserved quantities in the classical
electromagnetic theory of the vacuum may be of
some interest; these new conserved quantities
augment the known stress—energy quantities of the
electromagnetic field, and appear to be mathe-

matically independent of those quantities. The
present paper details the basic mathematical facts
concerning the new conserved quantities, including
the proof of their conservation based upon Maxwell’s
equations, and deduces a few simple properties of
these quantities.

2. NOTATION

A system of inertia is assumed and is referred
to orthogonal, rectilinear, real coordinates (T = ct,
z, 9, 2) = (2°, 2', 2%, °) in which the metric tensor
g.: takes the diagonal Minkowskian form of signature
—2. Four-dimensional index notation is used, but
is augmented by 3-vector notation in those places
where the latter may be convenient or more ex-
pressive. Tensor indices have the range 0, 1, 2,
3, except if they precede ¢ in the alphabet, where
the restricted range 1, 2, 3 applies. An index of
the latter type, enclosed in parentheses, indicates
the corresponding Cartesian component of any 3-
vector expression to which it is attached. The
Einstein summation convention is employed for all
doubled indices, over the range appropriate to them,
and the comma denotes partial differentiation. ¢'™*™
is the completely antisymmetric tensor density for
four dimensions, and e, is the similar permutation
symbol for three dimensions (£'*® = €4, = +1).
The electromagnetic field (E, H) or (£, H,) is
expressed in Gaussian units and is represented in
a conventional way by means of an antisymmetric
tensor ¢;; defined by ¢ = E, and ¢a = encH..
Maxwell’s equations for vacuum are then expressed
concisely as

emnpc¢’m'q —_ 0’ (2)
9 bm.e = 0. ®3)
3. BASIC STATEMENT OF THE CONSERVATION
LAW

Consider the tensor Z‘™ (of valence 3 and weight
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-+1) that is defined as follows:

Ziik [i’g"gk” ipmq + %gir kn mmc
+ gtrgm kpmn + lg" iq krmn

ng _im 1krp 1n¢ 1m ikrp

— 39" — 379
_ gnqgw ikrm %gnagipeikrm]¢m"¢pa'r. (4)
This tensor has the symmetry property
Zv‘ik = Z“k, (5)

which can be verified by inspection of Eq. (4),
and satisfies the divergence equation

zZ7, =0, (6)
which is a weak identity based upon the Maxwell
vacuum equations. Because of the symmetry
expressed by Eq. (5), the set (6) contains at most
ten independent equations.

The divergence equation (6) can be interpreted as
expressing differential conservation laws for ten
quantities that may be hypothesized to possess
some important physical significance. The tensor
components Z** are to be interpreted as the spatial
densities of the conserved quantities, and the
remaining tensor components Z'’° are to be in-
terpreted as the components of the spatial 3-vectors
expressing the fluxes of the conserved quantities.
The conserved quantities may therefore conveniently
be labeled by the first two indices of the descriptive
tensor Z*7*.

Thus, with reference to any closed, stationary
Gaussian surface S enclosing a vacuum region of
space, the extensive quantity Z*’ defined by volume
integration inside S,

29 = [z"dayds, (=2, @
expresses the total amount of the (¢, j)th conserved
quantity that S momentarily contains. The extensive
quantity F*’ defined by surface integration over S,

= [zas., (=F", ®)
correspondingly represents the total rate at which
the (7, j)th conserved quantity is momentarily
flowing out of the volume bounded by S. The
integral form of the conservation law expressed by
Eq. (6), in terms of the extensive quantities Z°/

and F*/ just defined, is
dZ'/dT =

—F", 9
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4, PROOF OF THE CONSERVATION LAW

By differentiating Eq. (4) to form the divergence
Z*'* ,, the following expression is obtained for that
divergence:

Z:’ikl= = [.l ir
+ %gr iq kzrmn +
1

ng 1m ikrp na 1m ikrp
299 -

39™'g
na ip _jkrm

— 39™g7% 307977 " Ibmabpa, e
+ [ g'rgkne:pmq + glf k» ipma
+ gargm kpmn + ir cq kpmn

9 9
1 ng |m ikrp 1,n¢ 1m tkrp

299

- %g"a ‘p Thrm - %gﬂqg’pe'hrm]¢m".k¢,¢."
By inspection, the 5th, 6th, 7th, and 8th terms
of Eq. (10) are seen to vanish identically because
they involve contractions of expressions that are
antisymmetric in 7 and k with an expression that
is symmetric in the same indices. The index permuta-
tion [(m, p)(n, 9)(k, r)], which is allowable inside
the second square bracket in Eq. (10), shows that
the 15th term is identically the negative of the
13th term, and that the 16th term is identically
the negative of the 14th term, so that these four
terms are also identically eliminated. The 9th and
10th terms of Eq. (10) can be seen to vanish because
of the Maxwell equation (3), while the 11th and 12th
terms vanish because of the Maxwell equation (2).
Thus, only the first four terms of Eq. (10) survive,
enabling that equation to be condensed to

4Z”k.k = [gir(glmeipmq _'_ giqekpmn)
+ ¢7@""™ + g b (11)

The further reduction of this equation is greatly
facilitated by the use of the following identity:

lcn ipme + lgn kn spma

1r ta Iwm-

(10)

kn _fpma km ipng ik _mnpa

[g7e™™ — g™ — g’

+ gakemnpi + gpkemnia] —_ 0. (12)
The proof of this identity is surprisingly simple.
Inspection shows that the left-hand side of Eq. (12)
is completely antisymmetric in the five free indices
(m, n, p, q, 7); it must therefore vanish in four
dimensions, where at least two out of any set of
five free indices must always be equal.

By contracting the identity (12) with ¢,,,s, taking
advantage of antisymmetries that exist, relabeling
dummy indices, and rearranging terms, the following
less obvious identity is derived:
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P —

= " b0 — 277 (¢ bper).  (13)

The last term on the right-hand side of Eq. (13)
vanishes because of the Maxwell equation (3);
when this term is dropped from Eq. (13), the
resulting weak identity can be differentiated with
respect to 2", and then contracted with ¢,,,, to give
the following weak identity:

gkneipmq¢mn¢pq.rk = %giqekpmn¢mu¢kp.qr- (14)

Adding the term [97°€”™¢mbrq.ri] to both sides of
Eq. (14) and rearranging the right-hand side, the
following weak identity is next obtained:

("™ + g™ Dmabra, e
= %giqekpmnd’mn[d’pq,k + ¢ak.p + ¢Icr.a].r° (15)

However, the square bracket in Eq. (15) vanishes
because of the Maxwell equation (2); the following
weak identity has therefore been proved on the
basis of Maxwell’s equations:

(gkneipma + g“e’"""")¢mn¢m_,k = 0. (16)

This equation (together with the same equation
with the free index j replaced by Z) obviously
suffices to prove the vanishing of the right-hand
side of Eq. (11). This completes the proof of the
divergence equation (6) on the basis of Maxwell’s
vacuum equations, and provides the foundation for
the conservation law under discussion.

(g

5. COMPONENTS OF THE DESCRIPTIVE TENSOR

Straightforward calculation from Eq. (4), with
the free use of Maxwell’s equations, indicates that
the individual components Z‘* of the descriptive
tensor can be expressed fairly simply in terms of
the electric and magnetic field vectors and their
derivatives. The spatial density components Z*
are found to be given by the following formulas:

Z°° = [E-(curl E) + H-(curl H)], am)
wo _ [ 2B ﬁ]
Z —[Ex8T+HxaT ) (18)
Z*° = §,[E+(curl E) + H-(curl H)]
— E (curl E)y — H,(curl H),
- Eb(curl E)(a) bl Hb(curl H)(a)' (19)

Note that the quantity Z°° equals the trace of
the matrix formed of the quantities Z**°. The flux
components Z‘* are found to be given by the
following formulas:
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7% = 72°° — [cur] (E xH)],.,. (20)
Z% = 2" 4 o [3E’ + H)y

— (B,E; + HH)).., (1)
zZ*? = $,2°° + (H,E,.. — E,H,,.

+ H,E.. — EH,.). (22

The original conservation equation (1) is seen to be
represented by the particular case 2=37=0 of Eq. (6).

6. PROPERTIES OF THE DESCRIPTIVE TENSOR

A. Independence of Stress—-Energy

The tensor Z**, according to its defining equation
(4), is bilinear in the electromagnetic field and its
first partial derivatives. As such, it is similar in
structure to tensors that can be constructed from
the first partial derivatives of the components of
the conventional stress—energy tensor 7,, The
tensor Z‘"* is independent of the stress—energy
tensor, however, in the sense that the components
of Z** cannot be represented as linear combinations
of the derivatives T,., taken with constant
coefficients, even when the Maxwell equations are
freely used. This can be seen particularly clearly in
the case of the components Z°*° and Z*°, although
the proof of this is not displayed here.

Earlier formulas that contained fewer terms than
Eq. (4) were considered for the definition of the
tensor Z'"*, but were rejected because detailed
examination revealed that the individual components
of the tensor contained extraneous terms that were
identically conserved independently of Maxwell’s
equations, or that were expressible in terms of the
first derivatives of the stress—energy tensor. The
majority of the extraneous terms of the second type
and, it is believed, all the extraneous terms of the first
type, have been eliminated by covariant subtrac-
tions. These subtractions necessitated the present
lengthy form of Eq. (4), but led to the recognition
of the symmetry expressed by Eq. (5), and gave
the simple component expressions displayed in Eqgs.
(17)-(22). In Eq. (4), the last four terms, taken
together, are not only expressible completely in
terms of stress—energy derivatives, but even have
a vanishing contribution to the divergence Z°™* ,
independently of the Maxwell equations; the subtrac-
tion of these four terms in Eq. (4) is nevertheless
desirable because it frees the tensor components
Z*™* of a great many stress—energy derivatives whose
presence is otherwise implied, but implied much
less obviously, by the first four terms of Eq. (4).
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The tensor Z** has been normalized to give the
component Z°® the value specified by Eq. (17),
modulo the Maxwell equations.

The extent of the subtractions of stress—energy
derivatives that have been made in arriving at the
present form for Eq. (4) can be largely understood
by examining the following rearranged form of
Eq. (4):

Z% = Bg"(g"¢™ 4 0 ¢ bt
sm_jknp gimeln'mz + gkmeﬁﬂp)Tmn.P]’ (23)

-— 21r(g €
in which T,. stands for the conventional stress—
energy tensor of the electromagnetic field,

Ton = (1/4m) (8002 — 30" Gun)brsf ber-  (24)

In the formulation of the tensor Z‘** given by
Egs. (4) or (23), the only remaining terms that its
components contain which are identifiable as being
proportional to stress—energy derivatives T, are
the curl of the Poynting vector, appearing in Eq.
(20) and implicitly in Eq. (22), and the Maxwell
stress gradients appearing in Eq. (21). These terms
affect the localization of the fluxes of the new
conserved quantities, but not the localization of
their spatial densities. Upon closer examination,
all of these residual flux terms that involve stress—
energy derivatives are seen to be curl terms whose
3-divergences vanish identically; they therefore do
not contribute to the total efflux integrals F'’
defined by Eq. (8), and thus have no effect on the
rates of flow of the new conserved quantities over
extended regions of space. These curl terms have
identically vanishing instantaneous values in the
important case of a time-periodic plane-wave field
of arbitrary type of polarization, further supporting
the conclusion that their presence is completely
inessential. The curl terms in guestion may not be
arbitrarily dropped from their respective equations,
being required from the standpoint of covariance,
but their elimination may be sought by means of
some further covariant subtraction process.

B. Vanishing of Contractions

No nonvanishing 4-vectors can be constructed
from the descriptive tensor Z*"* by contracting it
with the usual constant tensors. Thus, the contrac-
tion €;;.Z°" vanishes identically because of the
symmetry property expressed by Eq. (5); the con-
traction ¢;;Z‘"* can be shown to vanish because of
the Maxwell equations (2) and (3), by direct calcula-
tion from Eq. (4); finally, the contractions g,,.Z ™" =
gmnZ™ '™ also vanish because of the Maxwell equations
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(2) and (3), as can be proved by proceeding from
Eq. (4) with the aid of the identity expressed by
Eq. (12). The inability of simple contractions to
nontrivially lower the valence of the tensor Z*%*
implies that the same means are also incapable
of lowering the tensor valence of the basic divergence
equation (6).

C. Conservation Symmetries

In stress—energy theory, the fact is familiar that
the vector flux of energy is proportional to the
gpatial density of momentum. In the case of the
new conserved quantities under discussion, a larger
but analogous set of symmetries exists. Thus, with
reference to the formulas (18)—(21), the following
relationships are found to hold (neglecting the curl
terms of flux discussed in Sec. 6A above): The
vector flux of the (0, 0)th conserved quantity
(described by the components Z°”) is proportional
to the 3-vector formed from the spatial densities
of the three (0, b)th conserved quantities (described
by the components Z°*°); but, in turn, the compo-
nents of the vector fluxes of the (0, b)th conserved
quantities (described by the components Z°°) are
proportional to the spatial densities of the (b, ¢)th
conserved quantities (described by the components
Zch)'

7. PHYSICAL DIMENSIONS OF THE CONSERVED
QUANTITIES

The ten conserved extensive quantities Z*7 defined
by Eq. (7) all have units of dynes, and are presum-
ably dynamical quantities of some sort. If the
definition of the descriptive tensor Z** were
augmented by a dimensional factor equal to the
velocity of light, then the conserved quantities Z*'
would have the dimensions of ergs per second. This
very crudely suggests that the Z‘’ might provide a
measure of some sort of activity in the field, a
suggestion that finds support in the fact that the
densities of the new conserved quantities all vanish
in a static field [see Eqgs. (17)—(19), modulo Max-
well’s equations).

Without the introduction of dimensional factors
more arbitrary than the velocity of light, the units
of the conserved quantities Z°' cannot be brought
into coincidence with those of action per unit time
or of angular momentum. This, together with the
distinctness of the new conserved quantities from
stress—energy, discussed previously, and the un-
familiar form of the new conservation laws, suggests
that these conserved quantities may form a funda-
mentally new physical entity not heretofore known.
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If so, then because of the ubiquitous nature of
electromagnetism in physics, these quantities could
be expected to occur in other branches of physical
theory, just as do energy and momentum.

Pending the satisfactory physical interpretation
of the new conserved quantities, economy of expres-
sion will be facilitated by assigning them convenient
identifying names; the ten conserved extensive
quantities Z*’ defined by Equation (7) will hereby
be collectively called the “zilch” of the electro-
magnetic field, and a particular one labeled by the
indices (7, j) will be referred to as the ‘‘4j-zilch”
of the field.

8. RETROGRADE FLOW OF ZILCH

It is instructive to calculate the zilch density
tensor Z‘™ in the special case of a time-periodic,
plane-wave, vacuum electromagnetic field of arbi-
trary type of polarization. Consider the wave field
to propagate in the -z direction, and employ
complex phasor notation in which 4/07 = -j8,
where 8 is the propagation constant of the wave.
The components of the electromagnetic field can
then be expressed as

Ea = Hv =4 exp (—]ﬂZ), (253)
E, = —H, = B exp (—j62), (25b)
E,=H, =0, 25¢)

where A and B are arbitrary complex coefficients.
With the aid of Eqs. (17)-(22), the time-averaged
values of the components Z‘™* can be computed
to be the following (the bar denotes the time
average):

Z°™ = [jB(A*B — AB¥)), (262)
7% = 7% = §t7%%° (26b)
7' = 7 = 86:2°, (26¢)
77 = 5188852, (26d)

Thus, in the case under consideration, and referring
exclusively to time averages, only the 00-, 03-, and
33-zilches may have nonvanishing densities and
fluxes, and their fluxes are all aligned parallel to the 2
axis. Finally, in the units used (namely, dyn/cm® for
spatial densities, and dyn/em’/light-cm for flux
components), all nonvanishing spatial densities and
flux components have a common real value, equal
to [j8(A*B — AB%).

In the case of a linearly polarized wave, A/B is
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real, and (A*B — AB¥*) vanishes. Thus, zilch is not
transported by linearly polarized waves. In the case
of a right-circularly polarized wave, A = +jB,
and [jB(A*B — AB*)] = 28 |B|* > 0; in the case
of a left-circularly polarized wave, 4 = —jB,
whereupon [jB(4*B — AB¥*)] = —28 |B|’ < 0;
thus, a nonvanishing flow of zilch accompanies any
circularly polarized wave, but the direction of this
flow reverses with the screw sense of the wave.
Another unusual property of this flow is that its
rate is linearly proportional to the frequency of
oscillation of the field.

Unlike energy and momentum, which are always
transported in the direction of propagation of the
wave field, zilch can evidently be transported either
in this direction or in the opposite (or retrograde)
direction, depending upon the sense of circular
polarization of the wave. This behavior of zilch
flow is somewhat similar to what would be expected
for quantities representing an intrinsic spin of the
field, and is suggestive of a possible direction for
the physical interpretation of zilch. Certainly, the
oceurrence of this similarity in what is strictly a
classical field theory would appear to merit further
investigation.

9. SUMMARY

The existence of ten new conserved quantities,
defined for the electromagnetic field and apparently
unrelated to stress—energy, has been mathematically
demonstrated. The new conserved quantities have
been demonstrated to possess flow properties that
are remarkably different from those of energy and
momentum. The problem of the physical interpreta-
tion of these new quantities is raised, and the
possibility is suggested that they occur in other
areas of physical theory as well as in electro-
magnetism, The nature of the group-invariance
properties that the new conservation laws may imply
also deserves investigation,
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